This ppt is the work by Dr. Costas Busch, used with permission, and available from http://csc.lsu.edu/~busch/courses/theorycomp/fall2008/ 1
The Pumping Lemma:
• Given a infinite regular language
L
• there exists an integerm
| w | m with length
• for any string w L
• we can write w x
• with
|x y| m
• such that:
Fall 2006
(critical length
yz and |
i
xy z L
Costas Busch - RPI
y | 1
i 0, 1, 2, ...
2
Non-regular languages
R
L {vv : v *}
Regular languages
Fall 2006
Costas Busch - RPI
3
Theorem:The language
R
L {vv : v *}
{a, b}
is not regular
Proof:
Fall 2006
Use the Pumping Lemma
Costas Busch - RPI
4
R
L {vv : v *}
Assume for contradiction that L is a regular language
Since L is infinite we can apply the Pumping Lemma
Fall 2006
Costas Busch - RPI
5
R
L {vv : v *}
Let
m
be the critical length for L
Pick a string w
such that: w
L
and length
We pick
Fall 2006
| w | m
m m m m
w a b b a
Costas Busch - RPI
6
From the Pumping Lemma: m m
m
we can write: w a b b a with lengths:
m
x y z
| x y | m, | y |1
m
m m m
w xyz a...aa...a...ab...bb...ba...a x Thus:
Fall 2006
y
z
k
y a , 1 k m
Costas Busch - RPI
7
m m m m
x y z a b b a
k
y a , 1 k m
From the Pumping Lemma: x
i
y z L
i 0, 1, 2, ...
Thus:
Fall 2006
2
xy z L
Costas Busch - RPI
8
m m m m
x y z a b b a
k
y a , 1 k m
From the Pumping Lemma:x
2
y z L
m m m
m+k
2
xy z = a...aa...aa...a...ab...bb...ba...a ∈ L
x
Thus:
Fall 2006
y a y m k m m m
b b a
Costas Busch - RPI
z
L
9
a
BUT:
m k m m m
b b a
L
k 1
R
L {vv : v *}
a
m k m m m
b b a
L
CONTRADICTION!!!
Fall 2006
Costas Busch - RPI
10
Therefore:
Our assumption thatL is a regular language is not true
Conclusion:L
is not a regular language
END OF PROOF
Fall 2006
Costas Busch - RPI
11
Non-regular languages n l n l
L {a b c
: n, l 0}
Regular languages