An investigation into a quadratic expression used to represent a parabolic edge in designing a flower garden utilizing calculus to determine the maximum area of the lawn
Purpose of the Project
Mr. Jack is an avid gardener and he is considering a new design for his garden. He has a rectangular lawn measuring 5 metres by 3 metres and wants to dig up part of it to include a flower bed. He desires to have a parabolic edge for the flower bed as shown below in Figure 1.
FIGURE 1
Objectives of Project
To find an expression that would best represent the parabolic edge.
To use Integration to find an expression for the area of the lawn.
To Differentiate the expression for the area to determine the maximum area of the lawn.
To investigate possible lawn design options with the area found in objective
Mathematical Formulation
y p
h q x FIGURE 2
1) Finding an expression to represent the parabolic edge of the flower bed which is also the parabolic edge of the lawn.
Let y= a(x-h)2 +p be the equation of the parabola where p is the maximum value of y…. (FIGURE 2)
Since (q,0) lies on the curve (i.e is a true root (where q is the positive root of the curve)
Substitute into
Which represents the parabolic edge.
2) Finding an expression for the area of the lawn.
Area under the curve =
Area =