A TERM PAPER
PRESENTED
BY
AROBOINOSEN HILLARY
M.ENG/S.E.E.T/2011/3137
AGRICULTURAL AND BIO-RESOURCES ENGINEERING DEPARTMENT
FEDERAL UNIVERSITY OF TECHNOLOGY
MINNA
SEPTEMBER 2012
ABSTRACT
Irrigation systems should be a relevant agent to give solutions to the increasing demand of food, and to the development, sustainability and productivity of the agricultural sector. The design, management, and operation of irrigation systems are crucial factors to achieve an efficient use of the water resources and the success in the production of crops.The aim of this paper is to analyze the advances made in irrigation systems as well as identify the principal criteria and processes that allow improving the design and management of the irrigation systems,based on the basic concept that they facilitate to develop agriculture more efficiently and sustainable. The advances and management of irrigation systems at farm level is a factor of the first importance for the rational use of water, economic development of the agriculture and its environmental sustainability.
Key words: Irrigation, Design, Water Management, Operation Systems
INTRODUCTION
Water required by crops is supplied by nature in theform of precipitation, but when it becomes scarce or its distribution does not coincide with demand peaks, it is then necessary to supply it artificially, by irrigation. Several irrigation methods are available, and the selection of one depends on factors such as water availability, crop, soil characteristics, land topography, and associated cost. In the near future, irrigated agriculture will need to produce two-thirds of the increase in food products required by a larger population (English et al., 2002). The growing dependence on irrigated agriculture coincides with an accelerated competition for water and increased awareness of unintended negative consequences of poor design and management (Cai et al., 2003)
Optimum
References: English, M.J., K.H. Solomon, and G.J. Hoffman. 2002.A paradigm shift in irrigation management. J. Irrig. Drain. Eng. 128:267-277. Evans, R. G. and B. A. King. 2012. Site-specific sprinkler irrigation in a water-limited future. Trans. ASABE 55(2): 493-504. Cai, X., D.C. McKinney, and M.W. Rosegrant. 2003. Sustainability analysis for irrigation water management in the Aral Sea region. Agric. Syst. 76:1043-1066. James Hardie. 2011. Drip Irrigation for Landscaping: An Introductory Guide,26, in Irrigation Association, “Agricultural Hardware,” Agricultural School of Irrigation, 17 King, B Koegelenberg, F. and R. Reinders. 2011. Performance of Drip Irrigation Systems under Field Conditions (South Africa: Agricultural Research Center-Institute for Agricultural Engineering). Kranz, W. L., R. G. Evans, and F. R. Lamm. 2012. A review of center-pivot irrigation control and automation technologies. Applied Eng. in Agric. 28(3): (in press) Kruse, A., B.A Kumar, R. and J. Singh. 2003. Regional water management modeling for decision support in irrigated agriculture. J. Irrig. Drain. Eng. 129:432-439. Martin, D. L., W. R. Kranz, A. L. Thompson, and H. Liang. 2012. Selecting sprinkler packages for center pivots. Trans. ASABE 55(2): 513-523. O’Brien .E. 1998.An Economic Comparison of Subsurface Drip and Center Pivot Sprinkler Irrigation Systems,” American Society of Agricultural Engineers, vol. 14(4), (1998): 391-398. Playán, E., and L. Mateos. 2006. Modernization and optimization of irrigation systems to increase water productivity. Agric. Water Manage. 80:100-116. Rogers, D. 2012.LEPA Irrigation Management for Center Pivots. Irrigation Association Online; available from http://www.oznet.ksu.edu/library/ageng2/l907.pdf; Internet; accessed 15 October 2012 Scherer, 1999 USDA-NASS. 2012. Farm and ranch irrigation survey. Washington, D.C.: USDA National Agricultural Statistics Service. Available at: www.agcensus.usda.gov. Accessed 11 October 2012