Preview

Amath 250 notes

Good Essays
Open Document
Open Document
36731 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Amath 250 notes
Introduction to Differential Equations
Course Notes for AMath 250
J. Wainwright1
Department of Applied Mathematics
University of Waterloo
March 9, 2010

1

c J. Wainwright, April 2003

Contents
1 First Order Differential Equations
1.1 DEs and Mechanics . . . . . . . . . . . . . . . . . . . .
1.1.1 Newton’s Second Law of Motion . . . . . . . . .
1.1.2 Dimensions of physical quantities . . . . . . . .
1.1.3 Newton’s Law of Gravitation . . . . . . . . . .
1.2 Mathematical aspects of first order DEs . . . . . . . .
1.2.1 Types of first order DEs . . . . . . . . . . . . .
1.2.2 Solving separable DEs . . . . . . . . . . . . . .
1.2.3 Solving linear DEs . . . . . . . . . . . . . . . .
1.2.4 Qualitative sketches of families of solutions . . .
1.2.5 First order linear DEs with constant coefficient
1.2.6 An important special case . . . . . . . . . . . .
1.2.7 A common error . . . . . . . . . . . . . . . . .
1.2.8 Initial value problems . . . . . . . . . . . . . . .
1.3 Other applications of first order DEs . . . . . . . . . .
1.3.1 Mixing problems . . . . . . . . . . . . . . . . .
1.3.2 Population growth . . . . . . . . . . . . . . . .
1.3.3 Epidemics . . . . . . . . . . . . . . . . . . . . .
1.3.4 Cooling problems . . . . . . . . . . . . . . . . .
1.3.5 Pursuit problems . . . . . . . . . . . . . . . . .
1.3.6 Electrical circuits . . . . . . . . . . . . . . . . .
2 Dimensional Analysis
2.1 Writing physical relations in dimensionless form . . . .
2.1.1 Characteristic scales and dimensionless variables
2.1.2 The mixing tank DE . . . . . . . . . . . . . . .
2.1.3 The sky-diver DE . . . . . . . . . . . . . . . . .
2.2 Deducing physical relations using dimensional analysis . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1 A motivating example . . . . . . . . . . . . . .
2.2.2 Complete sets of dimensionless variables . . . .
2.2.3 The Buckingham Pi Theorem . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.



References: Borelli, R.L. and Coleman, C.S., 1987, Differential Equations: A Modeling Approach, PrenticeHall. Goldberg, J. and Potter, M.C., 1998, Differential Equations: A Systems Approach, PrenticeHall. Simmons, G.F., 1972, Differential Equations – with applications and historical notes, McGrawHill. Reiss, E.L., Callegari, A.J., Ahluwalia, D.S., 1976, Ordinary differential equations with applications, Holt, Rinehart & Winston. Brauer, F. and Nohel, J.A., 1967, Ordinary Differential Equations, W.A. Benjamin. Braun, M., 1983, Differential Equations and their Applications, Springer-Verlag. Boyce, W.E. and diPrima, R.C., 1997, Elementary Differential Equations and Boundary Value Problems, 6th edition, J

You May Also Find These Documents Helpful