(SESSION : 2014)
SUBJECT : MATHS( xf.kr )
SOLUTION ( gy )
19.
LHS bc c a ab qr r p
pq
yz zx xy
C1 C1 + C2 + C3
2(a b c ) c a a b
=
2(p q r )
r p
pq
2( x y z) z x x y abc c a ab
=2
pqr
r p
pq
xyz zx xy
C2 C2 – C1
C3 C3 – C1 abc =2
b c
pqr
q r
xyz y z
C1 C1 + C2 + C3 a b c
=2
p q r x y z a b c
=2
p q r x y z
Hence Proved
20.
x = a sin 2t (1 + cos2t) dx = 2a cos 2t (1 + cos 2t) – 2a sin22t dt = 2a cos 2t + 2a cos2 2t – 2a sin2 t
= 2a cos 2t + 2a cos 4t y = b cos 2t (1 – cos 2t) dy = – 2b sin2t (1 – cos 2t) + b cos 2t (2 sin 2t) dt = – 2b sin 2t + 2b sin 2t cos 2t + 2b sin 2t cos 2t
= – 2b sin 2t + 2b sin 4t
dy dy / dt
=
dx dx / dt
12th CBSE SOLUTION_MATHS SAT (2)_PAGE # 1
=
2b sin 4t 2b sin 2t
2a cos 2t 2a cos 4t
=
b (sin 4t 2b sin 2t ) a cos 2t 2a cos 4t
(sin sin )
dy
2
b
dx t = a cos cos
4
2
b (1) b =
=
a (1) a 21.
hence proved
x (1 + y2) dx – y (1 + x2) dy = 0 y (1 + x2) dy = x (1 + y2) dx ydy 1 y
2
x
=
1 x2
dx
Integrating both sides dy x y = dx I y2
I x2
1
2
2y
1 y
2
dy =
1
2
2x
1 x
2
dx
1
1
log |1 + y2| = log |1 + x2| + logC
2
2
log |1 + y2| = log |1 + x2| + 2 logC log |1 + y2| = log |C2 (1 + x2)| when y = 1, x = 0
2 = C2
1 + y2 = 2 (1 + x2) y2 = 2 (1 + x2) y2 = 2x2 + 1 y= 22.
2x2 1
Equation of staight line passing through (2, 1, 3) is x2 y 1 z3 =
=
a b c
It is perpendicular to the lines
a + 2b + 3c = 0
– 3a + 2b + 5c = 0 a b c =
=
10 6
59
26 a b c =
=
4
14
8
a b c
=
=
2
7
4
Equation of straight line is x2 y 1 z3 =
=
2
7
4
cartesian equation
Vector equation
ˆ
ˆ
j j r = (2 ˆ + ˆ + 3 k )