Antiparticles bind with each other to form antimatter just as ordinary particles bind to form normal matter. For example, a positron (the antiparticle of the electron) and an antiproton can form an antihydrogen atom. Physical principles indicate that complex antimatter atomic nuclei are possible, as well as anti-atoms corresponding to the known chemical elements. To date, however, anti-atoms more complex than antihelium have neither been artificially produced nor observed in nature. Studies of cosmic rays have identified both positrons and antiprotons, presumably produced by high-energy collisions between particles of ordinary matter.
There is considerable speculation as to why the observable universe is apparently composed almost entirely of ordinary matter, as opposed to a more symmetric combination of matter and antimatter. This asymmetry of matter and antimatter in the visible universe is one of the greatest unsolved problems in physics.[2] The process by which this asymmetry between particles and antiparticles developed is called baryogenesis.
Antimatter in the form of anti-atoms is one of the most difficult materials to produce. Antimatter in the form of individual anti-particles, however, is commonly produced by particle