Top-Rated Free Essay
Preview

background information about waste disposal practices

Good Essays
3574 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
background information about waste disposal practices
INTRODUCTION

Waste disposal
Waste management is the handling of discarded materials. Recycling and composting, which transform waste into useful products, are forms of waste management. The management of waste also includes disposal, such as landfilling.
Waste can be almost anything, including food, leaves, newspapers, bottles, construction debris, chemicals from a factory, candy wrappers, disposable diapers, old cars, or radioactive materials. People have always produced waste, but as industry and technology have evolved and the human population has grown, waste management has become increasingly complex.
A primary objective of waste management today is to protect the public and the environment from potentially harmful effects of waste. Some waste materials are normally safe, but can become hazardous if not managed properly. For example, 1 gal (3.75 l) of used motor oil can potentially contaminate one million gal (3,790,000 l) of drinking water .
Every individual, business, or organization must make decisions and take some responsibility regarding the management of his or her waste. On a larger scale, government agencies at the local, state, and federal levels enact and enforce regulations governing waste management. These agencies also educate the public about proper waste management. In addition, local government agencies may provide disposal or recycling services, or they may hire or authorize private companies to perform those functions.
Throughout history, there have been four basic methods of managing waste: dumping it, burning it, finding another use for it (reuse and recycling), and not creating the waste in the first place (waste prevention). How those four methods are utilized depends on the wastes being managed. Municipal solid waste is different from industrial, agricultural, or mining waste. Hazardous waste is a category that should be handled separately, although it sometimes is generated with the other types.
The first humans did not worry much about waste management. They simply left their garbage where it dropped. However, as permanent communities developed, people began to dispose of their waste in designated dumping areas. The use of such "open dumps" for garbage is still common in many parts of the world. Open dumps have major disadvantages, however, especially in heavily populated areas. Toxic chemicals can filter down through a dump and contaminate groundwater . The liquid that filters through a dump or landfill is called leachate. Dumps may also generate methane, a flammable and explosive gas produced when organic wastes decompose under anaerobic (oxygen-poor) conditions.
The landfill, also known as the "sanitary landfill," was invented in England in the 1920s. At a landfill, the garbage is compacted and covered at the end of every day with several inches of soil . Landfilling became common in the United States in the 1940s. By the late 1950s, it was the dominant method for disposing municipal solid waste in the nation.
Early landfills had significant problems with leachate and methane, but those have largely been resolved at facilities built since about the early 1970s. Well-engineered landfills are lined with several feet of clay and with thick plastic sheets. Leachate is collected at the bottom, drained through pipes, and processed. Methane gas is also safely piped out of many landfills.
The dumping of waste does not just take place on land. Ocean dumping, in which barges carry garbage out to sea, was once used as a disposal method by some United States coastal cities and is still practiced by some nations. Sewage sludge, or waste material from sewage treatment, was dumped at sea in huge quantities by New York City as recently as 1992, but this is now prohibited in the United States. Also called biosolids, sewage sludge is not generally considered solid waste, but it is sometimes composted with organic municipal solid waste.
Burning has a long history in municipal solid waste management. Some American cities began to burn their garbage in the late nineteenth century in devices called cremators. These were not very efficient, however, and cities went back to dumping and other methods. In the 1930s and 1940s, many cities built new types of more-efficient garbage burners known as incinerators. The early incinerators were rather dirty in terms of their emissions of air pollutants, and beginning in the 1950s they were gradually shut down.
However, in the 1970s, waste burning enjoyed another revival. These newer incinerators, many of which are still in operation, are called "resource recovery" or "waste-to-energy" plants. In addition to burning garbage, they produce heat or electricity that can be used in nearby buildings or residences, or sold to a utility. Many local governments became interested in waste-to-energy plants following the energy crisis in 1973. However, since the mid-1980s, it became difficult to find locations to build these facilities, mainly because of public opposition focused on air-quality issues.
Another problem with incineration is that it generates ash, which must be landfilled. Incinerators usually reduce the volume of garbage by 70–90%. The remainder of the incinerated waste comes out as ash that often contains high concentrations of toxic substances.
Municipal solid waste will likely always be landfilled or burned to some extent. In the past 25 years, however, non-disposal methods such as waste prevention and recycling have become more common. Because of public concerns and the high costs of landfilling and burning (especially to build new facilities), local governments want to reduce the amount of waste that must be disposed in these ways.
Municipal solid waste is a relatively small part of the overall waste generated in the United States. More than 95% of the total 4.5 billion tons of solid waste generated in the United States each year is agricultural, mining, or industrial waste.
These wastes do not receive nearly as much attention as municipal solid waste, because most people do not have direct experience with them. Also, agricultural and mining wastes, which make up 88% of the overall total of solid waste, are largely handled at the places they are generated, that is, in the fields or at remote mining sites.
Mining nearly always generates substantial waste, whether the material being mined is coal , clay, sand , gravel, building stone, or metallic ore. Early mining concentrated on the richest lodes of minerals . Because modern methods of mining are more efficient, they can extract the desired minerals from veins that are less rich. However, much more waste is produced in the process.
Many of the plant and animal wastes generated by agriculture remain in the fields or rangelands. These wastes can be beneficial because they return organic matter and nutrients to the soil. However, modern techniques of raising large numbers of animals in small areas generate huge volumes of animal waste, or manure. Waste in such concentrated quantities must be managed carefully, or it can contaminate groundwater or surface water.
Industrial wastes that are not hazardous have traditionally been sent to landfills or incinerators. The rising cost of disposal has prompted many companies to seek alternative methods for handling these wastes, such as waste prevention and recycling. Often a manufacturing plant can reclaim certain waste materials by feeding them back into the production process.
Hazardous wastes are materials considered harmful or potentially harmful to human health or the environment. Wastes may be deemed hazardous because they are poisonous, flammable, or corrosive, or because they react with other substances in a dangerous way.
Industrial operations have produced large quantities of hazardous waste for hundreds of years. Some hazardous wastes, such as mercury and dioxins, may be released as gases or vapors. Many hazardous industrial wastes are in liquid form. One of the greatest risks is that these wastes will contaminate water supplies.
An estimated 60% of all hazardous industrial waste in the United States is disposed using a method called deep-well injection. With this technique, liquid wastes are injected through a well into an impervious rockformation that keeps the waste isolated from groundwater and surface water. Other methods of underground burial are also used to dispose hazardous industrial waste and other types of dangerous material.
Pesticides used in farming may contaminate agricultural waste. Because of the enormous volumes of pesticides used in agriculture, the proper handling of unused pesticides is a daunting challenge for waste managers. Certain mining techniques also utilize toxic chemicals. Piles of mining and metal-processing waste, known as waste rock and tailings, may contain hazardous substances. Because of a reaction with the oxygen in the air, large amounts of toxic acids may form in waste rock and tailings and leach into surface waters.
Public attitudes also play a pivotal role in decisions about waste management. Virtually every proposed new landfill or waste-to-energy plant is opposed by people who live near the site. Public officials and planners refer to this reaction as NIMBY, which stands for "Not In My BackYard." If an opposition group becomes vocal or powerful enough, a city or county council is not likely to approve a proposed waste-disposal project. The public also wields considerable influence with businesses. Recycling and waste prevention initiatives enjoy strong public support. About 19% of United States municipal solid waste was recycled or composted in 1994, 10% was incinerated, and 71% was landfilled.
Preventing or reducing waste is typically the least expensive method for managing waste. Waste prevention may also reduce the amount of resources needed to manufacture or package a product. For example, most roll-on deodorants once came in a plastic bottle, which was inside a box. Beginning about 1992, deodorant manufacturers redesigned the bottle so that it would not tip-over easily on store shelves, which eliminated the need for the box as packaging. This is the type of waste prevention called source reduction. It can save businesses money, while also reducing waste.
Waste prevention includes many different practices that result in using fewer materials or products, or using materials that are less toxic. For example, a chain of clothing stores can ship its products to its stores in reusable garment bags, instead of disposable plastic bags. Manufacturers of household batteries can reduce the amount of mercury in their batteries. In an office, employees can copy documents on both sides of a sheet of paper, instead of just one side. A family can use cloth instead of paper napkins.
Composting grass clippings and tree leaves at home, rather than having them picked up for disposal or municipal composting, is another form of waste prevention. A resident can leave grass clippings on the lawn after mowing (this is known as grass-cycling), or can compost leaves and grass in a backyard composting bin, or use them as a mulch in the garden.
When the current recycling boom began in the late 1980s, markets for the recyclables were not sufficiently considered. A result was that some recyclable materials were collected in large quantities but could not be sold, and some ended up going to landfills. Today, the development of recycling markets is a high priority. "Close the loop" is a catch-phrase in recycling education; it means that true recycling (i.e., the recycling loop) has not taken place until the new product is purchased and used.
To boost recycling markets, many local and state governments now require that their own agencies purchase and use products made from recycled materials. In a major step forward for recycling, President Bill Clintonissued an executive order in 1993 requiring the federal government to use more recycled products.
Many managers of government recycling programs feel that manufacturers should take more responsibility for the disposal of their products and packaging, rather than letting municipalities bear the brunt of the disposal costs. An innovative and controversial law in Germany requires manufacturers to set up collection and recycling programs for disused packaging of their products.
The high cost of government-created recycling programs is often criticized. Supporters of recycling argue it is still less expensive than landfilling or incineration, when all costs are considered. Another concern about recycling is that the recycling process itself may generate hazardous wastes that must be treated and disposed.
Recycling of construction and demolition (C&D) debris is one of the growth areas for recycling. Although C&D debris is not normally considered a type of municipal solid waste, millions of tons of it have gone to municipal landfills over the years. If this material is separated at the construction or demolition site into separate piles of concrete, wood, and steel, it can usually be recycled.
Composting is considered either a form of recycling, or a close relative. Composting occurs when organic waste— such as yard waste, food waste, and paper—is broken down by microbial processes. The resulting material, known as compost, can be used by landscapers and gardeners to improve the fertility of their soil.
Yard waste, primarily grass clippings and tree leaves, makes up about one-fifth of the weight of municipal solid waste. Some states do not allow this waste to be disposed. These yard-waste bans have resulted in rapid growth for municipal composting programs. In these programs, yard waste is collected by trucks (separately from garbage and recyclables) and taken to a composting plant, where it is chopped up, heaped, and regularly turned until it becomes compost.
Waste from food-processing plants and produce trimmings from grocery stores are composted in some parts of the country. Residential food waste is the next frontier for composting. The city of Halifax, in Canada, collects food waste from households and composts it in large, central facilities.
Biological treatment, a technique for handling hazardous wastes, could be called a high-tech form of composting. Like composting, biological treatment employs microbes to break down wastes through a series of metabolic reactions. Many substances that are toxic, carcinogenic (cancer-causing), or undesirable in the environment for other reasons can be rendered harmless through this method.
Extensive research on biological treatment is in progress. Genetic engineering, a controversial branch of biology dealing with the modification of genetic codes, is closely linked with biological treatment, and could produce significant advances in this field.
Waste management became a particularly expensive proposition during the 1990s, especially for disposal. Consequently, waste managers constantly seek innovations that will improve efficiency and reduce costs. Several new ideas in land-filling involve the reclamation of useful resources from wastes.
For example, instead of just burning or releasing the methane gas that is generated within solid-waste landfills, some operators collect this gas, and then use it to produce power locally or sell it as fuel. At a few landfills, managers have experimented with a bold but relatively untested concept known as landfill mining. This involves digging up an existing landfill to recover recyclable materials, and sometimes to re-bury the garbage more efficiently. Landfill mining has been criticized as costly and impractical, but some operators believe it can save money under certain circumstances.
In the high-tech world of incineration, new designs and concepts are constantly being tried. One waste-to-energy technology for solid waste being introduced to the United States is called fluidized-bed incineration. About 40% of incinerators in Japan use this technology, which is designed to have lower emissions of some air pollutants than conventional incinerators.
A 1994 United States Supreme Court ruling could increase the cost of incineration significantly. The Court ruled that some ash produced by municipal solid-waste incinerators must be treated as a hazardous waste, because of high levels of toxic substances such as lead and cadmium. This means that incinerator ash now has to be tested, and part or all of the material may have to go to a hazardous waste landfill rather than a standard landfill.
A much smaller type of incinerator is used at many hospitals to burn medical wastes, such as blood, surgical waste, syringes, and laboratory waste. The safety of these medical waste incinerators has become a major issue in some communities. A study by the Environmental Protection Agency released in 1994 found that medical waste incinerators were leading sources of dioxin emissions into the air. The same study warned that dioxins, which can be formed by the burning of certain chemical compounds, pose a high risk of causing cancer and other health hazards in humans.
The greatest impetus for waste prevention will likely come from the public. More and more citizens will come to understand that pesticides, excessive packaging, and the use of disposable rather than durable items have important environmental costs. Through the growth of the information society, knowledge about these and other environmental issues will increase. This should result in a continuing evolution towards more efficient and environmentally sensitive waste management.
Waste management is the collection, transport, processing or disposal, managing and monitoring of waste materials. The term usually relates to materials produced by human activity, and the process is generally undertaken to reduce their effect on health, the environment or aesthetics. Waste management is a distinct practice from resource recovery which focuses on delaying the rate of consumption of natural resources. All waste materials, whether they are solid, liquid, gaseous or radioactive fall within the remit of waste management.
Waste management practices can differ for developed and developing nations, for urban and rural areas, and for residential and industrial producers. Management of non-hazardous waste residential and institutional waste in metropolitan areas is usually the responsibility of local governmentauthorities, while management for non-hazardous commercial and industrial waste is usually the responsibility of the generator subject to local, national or international authorities.
Waste collection methods vary widely among different countries and regions. Domestic waste collection services are often provided by local government authorities, or by private companies in the industry. Some areas, especially those in less developed countries, do not have a formal waste-collection system. Examples of waste handling systems include:
In Europe and a few other places around the world, a few communities use a proprietary collection system known as Envac, which conveys refuse via underground conduits using a vacuum system. Other vacuum-based solutions include the MetroTaifun® [3] single-line and ring-line automatic waste collection system, where the waste is automatically collected through relatively small diameter flexible pipes from waste collection points spread out up to a distance of four kilometres from the waste collections stations.
In Canadian urban centres curbside collection is the most common method of disposal, whereby the city collects waste and/or recyclables and/or organics on a scheduled basis. In rural areas people often dispose of their waste by hauling it to a transfer station. Waste collected is then transported to a regional landfill.
In China, Plastic pyrolysis or Tire pyrolysis is: the process of converting waste plastic/tires into industrial fuels like pyrolysis oil, carbon black and hydrocarbon gas.End products are used as industrial fuels for producing heat, steam or electricity. Pyrolysis plant is also known as: pyrolysis unit, plastic to fuel industry, tire to fuel industry, plastic and tire recycling unit etc.The system is used in USA, California, Australia, Greece, Mexico, the United Kingdom and in Israel.For example, RESEM pyrolysis plant that has been operational at Texas USA since December 2011, and processes up to 60 tons per day.[4]
In Taipei, the city government charges its households and industries for the volume of rubbish they produce. Waste will only be collected by the city council if waste is disposed in government issued rubbish bags. This policy has successfully reduced the amount of waste the city produces and increased the recycling rate.
In Israel, the Arrow Ecology company has developed the ArrowBio system, which takes trash directly from collection trucks and separates organic and inorganic materials through gravitational settling, screening, and hydro-mechanical shredding. The system is capable of sorting huge volumes of solid waste, salvaging recyclables, and turning the rest into biogas and rich agricultural compost. The system is used in California, Australia, Greece, Mexico, the United Kingdom and in Israel. For example, an ArrowBio plant that has been operational at the Hiriya landfill site since December 2003 serves the Tel Aviv area, and processes up to 150 tons of garbage a day.[5]
In Saudi Arabia there is the world’s largest AWCS now being built in the vicinity of Islam’s holiest mosque (Mecca). During the Ramadan and Hajj 600,000 kilos, or 4,500 cubic meters, of waste is generated each day, which puts a heavy demand on those responsible for collecting the waste and litter. In the [3] MetroTaifun Automatic Waste Collection System, the waste is automatically collected from 74 waste feeding points spread out across the area and then transferred via a 20-kilometre pipe network to a central collection point, keeping all the waste collecting activities out of sight and below ground with the central collection point well away from the public areas.
In San Francisco, the local government established its Mandatory Recycling and Composting Ordinance in support of its goal of zero waste by 2020, requiring everyone in the city to keep recyclables and compostables out of the landfill. The three streams are collected with the curbside "Fantastic 3" bin system - blue for recyclables, green for compostables, and black for landfill-bound materials - provided to residents and businesses and serviced by San Francisco's sole refuse hauler, Recology. The City's "Pay-As-You-Throw" system charges customers by the volume of landfill-bound materials, which provides a financial incentive to separate recyclables and compostables from other discards. The City's Department of the Environment's Zero Waste Program has led the City to achieve 80% diversion, the highest diversion rate in North America.[6]
While waste transport within a given country falls under national regulations, trans-boundary movement of waste is often subject to international treaties. A major concern to many countries in the world has been hazardous waste. The Basel Convention, ratified by 172 countries, deprecates movement of hazardous waste from developed to less developed countries. The provisions of the Basel convention have been integrated into the EU waste shipment regulation. Nuclear waste, although considered hazardous, does not fall under the jurisdiction of the Basel Convention

You May Also Find These Documents Helpful

  • Good Essays

    Waste management is all about the need to change our attitude to waste. The four methods of managing waste at the moment are: landfill, composting, recycling and energy recovery (incineration). To be sustainable, waste must be managed in a way that is maintainable for the foreseeable future and will not be hurtful to the environment or the population. Waste is a problem at the moment because the amount of waste we use is increasing and therefore so is toxicity along with the time that the rubbish is toxic for. We are also running out of landfill sites. Therefore, another method of waste management must be found that will solve these problems.…

    • 1634 Words
    • 7 Pages
    Good Essays
  • Satisfactory Essays

    Explain the purpose of keeping waste to a minimum Describe the main causes of waste that may occur in a business environment Describe ways of keeping waste to a minimum Identify ways of using technology to reduce waste Outline the purpose and benefits of recycling Describe organisational procedures for recycling materials Describe the benefits of procedures for the recycling and disposal of hazardous materials Describe organisational procedures for the recycling and disposal of hazardous materials Outline the purpose of improving efficiency and minimising waste Describe ways of improving own working methods and use of technology to…

    • 824 Words
    • 4 Pages
    Satisfactory Essays
  • Better Essays

    Case 4.4 Waste Management

    • 3706 Words
    • 15 Pages

    Waste Management, Inc., incorporated in 1968, had become a leader in the industry of waste management services ranging from industrial operations to curbside collection. This company had become synonymous with many different kinds of disposal services that allowed for the company to grow and grow with a solid base over the course of twenty-eight years. Finally in 1996, the company reported total assets of almost $20 billion with net income close to $200 million. However, even with this growth and solid base, the company was feeling competitive pressures and net income was on the decline.…

    • 3706 Words
    • 15 Pages
    Better Essays
  • Powerful Essays

    WASTE What is “waste”? • Something undesirable – by product of a useful purpose – something to be managed • Something we haven’t found a use for yet – something to be avoided • Solid waste: any unwanted or discarded material we produce (not liquid or gas). o Industrial solid waste – by-­‐product produced by mines, agriculture and industry o Municipal solid waste (MSW) – trash or garbage produced in homes and workplaces • In US: o 98.5% of solid waste is industrial solid waste o (76% mining, 13% agriculture, 9.5% industry) o 1.5% Municipal solid waste • Waste management: manage waste in ways that reduce environmental harms without seriously trying to reduce the amount of waste produced. o Burying waste o Burning waste o Shipping waste Landfills • Landfills o US: 54% of all MSW is buried in landfills…

    • 7330 Words
    • 249 Pages
    Powerful Essays
  • Powerful Essays

    Travelodge Case

    • 4624 Words
    • 19 Pages

    Domestic waste management involves a contract with a waste disposal company. In essence, the concept is simple and involves them in storage bins for each type of material (paper, plastic, glass, wood, metal).…

    • 4624 Words
    • 19 Pages
    Powerful Essays
  • Good Essays

    Waste In Canada

    • 913 Words
    • 4 Pages

    Waste should not be seen as worthless junk, but more as a valuable resource, which could benefit people, industries and the environment. Many industries are picking up on this economical concept and changing the way they do business. These industries (commonly referred to as "eco-industrial parks") demonstrate how much can be gained by recycling and resource sharing. Within each park there are several industries working together in sharing the production and use of many costly resources. With all industries striving to achieve the common goal of maximizing revenue and reducing waste, one company's waste becomes another's resource. One method is where excess heat from a power plant warms nearby homes and agricultural greenhouses. These industries also utilize efficient recycling techniques in order to reuse valuable material. For example the sulphur scraped from the smokestacks of power plants is sold to dry wall companies. There are limits to how many lives you can give a pile of debris. In the long run, we have to reduce the amount of material we use and generate.…

    • 913 Words
    • 4 Pages
    Good Essays
  • Powerful Essays

    Michigan State University Family Impact Analysis on the Mental Health First Aid Program Family impact analysis is used to obtain evidence in order to decide how effective a rule, legislation, law, program, agency, or organization is within a family context. The family impact analysis conducts itself through specific guidelines, such procedures include five family impact principles: family responsibility, family stability, family relationships, family diversity, and family engagement. The family impact lens is a tool designed to evaluate public programs that are implemented to strengthen and support families throughout their lifetimes. Each principle is accompanied by a series of evidence-based questions that are able to address the target…

    • 1791 Words
    • 8 Pages
    Powerful Essays
  • Good Essays

    Municipal Solid Waste (MSW)—more commonly known as trash or garbage—consists of everyday items we use and then throw away, such as product packaging, grass clippings, furniture, clothing, bottles, food scraps, newspapers, appliances, paint, and batteries. This comes from our homes, schools, hospitals, and businesses (Municipal Solid Waste, 2013). There are many ways that constitute improper practices for the disposal of trash (solid waste). Some of the ways include: throwing it on the street, flushing down the toilet, sink or drain and in some cases throwing it directly into a body of water.…

    • 436 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Waste is usually produced from large companies, and is unwanted or unusable materials, although this can be inaccurate because some forms of waste may be recyclable therefore can be reused to produce further product.…

    • 2178 Words
    • 7 Pages
    Good Essays
  • Good Essays

    Disposing waste has huge environmental impacts and can cause serious problems. In U.K much is buried in landfill sites holes in the ground, sometimes old quarries, sometimes special dug. Some waste will eventually rot, but not at all, and in the process it may smell or generated methane gas, which is explosive and contributes to the greenhouse effect.…

    • 479 Words
    • 2 Pages
    Good Essays
  • Satisfactory Essays

    Waste will remain part of our lives for as long as we exist. While some people may produce more waste than other people, everybody produces it every day as leftover food, dirty water or garbage.…

    • 501 Words
    • 3 Pages
    Satisfactory Essays
  • Better Essays

    The ‘waste is avoided’ principle or where it cannot be altogether avoided, minimised and re-used or recycled where possible and otherwise disposed of in a responsible manner (South Africa, 2011). The waste management hierarchy provides a systematic and hierarchical approach to integrated waste management, addressing in turn waste avoidance, reduction, re-use, recycling, recovery, treatment and safe disposal as a last resort.…

    • 1363 Words
    • 6 Pages
    Better Essays
  • Satisfactory Essays

    Green Earth

    • 290 Words
    • 2 Pages

    There is nothing called waste in this universe.It is a misplaced resource,taking the example from the nature itself-the trees absorb all the nutrients from the mother earth and shed their leaves back to the nature.These leaves acts as a soil cover and the nutrients are back to the mother earth after they decompose.…

    • 290 Words
    • 2 Pages
    Satisfactory Essays
  • Good Essays

    Waste Managment

    • 1027 Words
    • 5 Pages

    Waste is unwanted products from industrial, rural and domestic areas. Australians are one of the most wasteful people in the world. Waste management includes the collection, transport, processing of materials, which can be solid or liquid’s.…

    • 1027 Words
    • 5 Pages
    Good Essays
  • Good Essays

    Waste Management

    • 316 Words
    • 2 Pages

    Waste management is the collection, transport, processing or disposal, managing and monitoring of waste materials. The term usually relates to materials produced by human activity, and the process is generally undertaken to reduce their effect on health, the environmentor aesthetics. Waste management is a distinct practice from resource recovery which focuses on delaying the rate of consumption ofnatural resources. All wastes materials, whether they are solid, liquid, gaseous or radioactive fall within the remit of waste management…

    • 316 Words
    • 2 Pages
    Good Essays