Alexander Gurwitsch around 1930
Around 1923 Alexander Gurwitsch discovers an "ultraweak" photon emission from living systems (onions, yeast,...), since he suggested connections between photon emission and cell division rate. He calls this photonemission "mitogenetic radiation". His experiments indicate that the wavelength is in the range around 260 nm (Bibliography under Gurwisch and also Ruth (1977, 1979)). Around 1950: Russian scientists rediscover "ultraweak photon emission" from living organisms. Most results are published in "Biophysics" (engl.) and originally in "Biofizika").( Bibliography under Ruth, 1979).
Italian nuclear physicists discover by chance "bioluminescence" of seedlings. They do not think that this finding is significant, but they publish the results. (Colli et al. 1954, 1955, Ruth 1979). The Russian biophysicist and the American chemist enunciate the first theory of ultraweak photonemission (UWPE) from biological systems, the so called "imperfection" theory. UWPE shall be an expression of the deviation from equilibrium, some kind of distortion of metabolic processes (Zhuravlev 1972, Seliger 1975, Ruth 1979). Independently from each other and by different motivations scientific groups in Australia (Quickenden), Germany (Fritz-Albert Popp), Japan (Inaba), and Poland (Slawinski) show evidence of ultraweak photon emission from biological systems by use of modern single-photon counting systems.
Need and Relevance The field of optics is one of the oldest and most important branches of the sciences. Long before the theory of electromagnetism was developed, optical phenomena were studied, characterized, and used as probes of nature. Since the invention of the laser a half-century ago, this tool has become the preeminent source for all studies involving light. It too has revolutionized countless areas of high technology including telecommunications, data storage, semiconductor manufacturing, healthcare technology,
Bibliography: under Ruth, 1979). Italian nuclear physicists discover by chance "bioluminescence" of seedlings. They do not think that this finding is significant, but they publish the results. (Colli et al. 1954, 1955, Ruth 1979).