Contents lists available at SciVerse ScienceDirect
Journal of Biomechanics journal homepage: www.elsevier.com/locate/jbiomech www.JBiomech.com Short communication
Beyond finite elements: A comprehensive, patient-specific neurosurgical simulation utilizing a meshless method
K. Miller n, A. Horton, G.R. Joldes, A. Wittek
Intelligent Systems for Medicine Laboratory, The University of Western Australia, Crawley, Perth, Western Australia 6909, Australia
a r t i c l e i n f o
a b s t r a c t
Article history:
Accepted 27 July 2012
To be useful in clinical (surgical) simulations, a method must use fully nonlinear (both geometric and material) formulations to deal with large (finite) deformations of tissues. The method must produce meaningful results in a short time on consumer hardware and not require significant manual work while discretizing the problem domain. In this paper, we showcase the Meshless Total Lagrangian
Explicit Dynamics Method (MTLED) which meets these requirements, and use it for computing brain deformations during surgery. The problem geometry is based on patient-specific MRI data and includes the parenchyma, tumor, ventricles and skull. Nodes are distributed automatically through the domain rendering the normally difficult problem of creating a patient-specific computational grid a trivial exercise. Integration is performed over a simple, regular background grid which does not need to conform to the geometry boundaries. Appropriate nonlinear material formulation is used. Loading is performed by displacing the parenchyma surface nodes near the craniotomy and a finite frictionless sliding contact is enforced between the skull (rigid) and parenchyma. The meshless simulation results are compared to both intraoperative MRIs and Finite Element Analysis results for multiple 2D sections.
We also calculate Hausdorff distances between the computed deformed surfaces of the ventricles and those observed intraoperatively.
References: Archip, N., Clatz, O., Whalen, S., Kacher, D., Fedorov, A., Kot, A., Chrisochoides, N., Jolesz, F., Golby, A., Black, P.M., Warfield, S.K., 2007 Arganda-Carreras, I., Sorzano, C.O.S., Marabini, R., Carazo, J.M., Ortiz-de-Solorzano, C., Kybic, J., 2006 Babuska, I., Melenk, J.M., 1997. The partition of unity method. International Journal for Numerical Methods in Engineering 40, 727–758. Belytschko, T., Lu, Y.Y., Gu, L., 1994. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering 37, 229–256. Bourgeois, G., Magnin, M., Morel, A., Sartoretti, S., Huisman, T., Tuncdogan, E., Meier, D., Jeanmonod, D., 1999 2701 Ciarlet, P.G., 1988 Cotin, S., Delingette, H., Ayache, N., 1999. Real-time elastic deformations of soft tissues for surgery simulation Doblare, M., Cueto, E., Calvo, B., Martinez, M., Garcia, J., Cegonino, J., 2005. On the employ of meshless methods in biomechanics Ferrant, M., Nabavi, A., Macq, B., Jolesz, F.A., Kikinis, R., Warfield, S.K., 2001. Registration of 3-D intraoperative MR images of the brain using a finiteelement biomechanical model. IEEE Transactions on Medical Imaging 20, 1384–1397. Grosland, N.M., Shivanna, K.H., Magnotta, V.A., Kallemeyn, N.A., DeVries, N.A., Tadepalli, S.C., Lisle, C., 2009 Horton, A., Wittek, A., Joldes, G.R., Miller, K., 2010. A meshless Total Lagrangian explicit dynamics algorithm for surgical simulation Horton, A., Wittek, A., Miller, K., 2007. Subject-specific biomechanical simulation of brain indentation using a meshless method Joldes, G.R., Wittek, A., Miller, K., 2009a. Computation of intra-operative brain shift using dynamic relaxation Engineering 198, 3313–3320. Joldes, G.R., Wittek, A., Miller, K., 2009b. Cortical surface motion estimation for brain shift prediction Joldes, G.R., Wittek, A., Miller, K., 2010. Real-time nonlinear finite element computations on GPU-application to neurosurgical simulation Methods in Applied Mechanics and Engineering 199, 3305–3314. Joldes, G.R., Wittek, A., Miller, K., 2012. Stable time step estimates for mesh-free particle methods Joldes, G.R., Wittek, A., Miller, K., Morriss, L., 2008. Realistic and efficient brainskull interaction model for brain shift computation. In: Miller, K., Nielsen, P.M.F Li, S., Liu, W.K., 2004. Meshfree Particle Methods. Springer Verlag, Berlin. Liu, G.R., 2003. Mesh free Methods: Moving Beyond the Finite Element Method. Luboz, V., Chabanas, M., Swider, P., Payan, Y., 2005. Orbital and maxillofacial computer aided surgery: patient-specific finite element models to predict Melenk, J.M., Babuˇska, I., 1996. The partition of unity finite element method: basic theory and applications Nakaji, P., Spetzler, R., 2004. Innovations in surgical approach: the marriage of technique, technology, and judgment Neal, M.L., Kerckhoffs, R., 2010. Current progress in patient-specific modeling. Oguro, S., Tuncali, K., Elhawary, H., Morrison, P.R., Hata, N., Silverman, S.G., 2011. Picinbono, G., Delingette, H., Ayache, N., 2003. Non-linear anisotropic elasticity for real-time surgery simulation Warfield, S.K., Haker, S.J., Talos, I.F., Kemper, C.A., Weisenfeld, N., Mewes, A.U.J., Goldberg-Zimring, D., Zou, K.H., 2005 Wittek, A., Hawkins, T., Miller, K., 2009. On the unimportance of constitutive models in computing brain deformation for image-guided surgery Wittek, A., Joldes, G., Couton, M., Warfield, S.K., Miller, K., 2010. Patient-specific non-linear finite element modelling for predicting soft organ deformation in Wittek, A., Miller, K., Kikinis, R., Warfield, S.K., 2007. Patient-specific model of brain deformation: application to medical image registration Yang, K.H., King, A.I., 2011. Modeling of the brain for injury simulation and prevention