The principles involved in successful bone grafts include osteoconduction (guiding the reparative growth of the natural bone), osteoinduction (encouraging undifferentiated cells to become active osteoblasts), and osteogenesis (living bone cells in the graft material contribute to bone remodeling). Osteogenesis only occurs with autografts.
Properties of various types of bone graft sources.
Osteoconductive
Osteoinductive
Osteogenic
Alloplast
+
–
–
Xenograft
+
–
–
Allograft
+
+/–
–
Autograft
+
+
+
Bone grafting is possible because bone tissue, unlike most other tissues, has the ability to regenerate completely if provided the space into which to grow. As native bone grows, it will generally replace the graft material completely, resulting in a fully integrated region of new bone. The biologic mechanisms that provide a rationale for bone grafting are osteoconduction, osteoinduction and osteogenesis.
Osteoconduction
Osteoconduction occurs when the bone graft material serves as a scaffold for new bone growth that is perpetuated by the native bone. Osteoblasts from the margin of the defect that is being grafted utilize the bone graft material as a framework upon which to spread and generate new bone.[1] In the very least, a bone graft material should be osteoconductive.
Osteoinduction
Osteoinduction involves the stimulation of osteoprogenitor cells to