ABSTRACT:
This paper describes a brain controlled robotic leg which is designed to perform the normal operations of a human leg. After implanting this leg in a human, the leg can be controlled with the help of user’s brain signals alone. This leg behaves similar to a normal human leg and it can perform operation like walking, running, climbing stairs etc. The entire system is controlled with the help of advanced microcontrollers and digital signal processors. The signals are taken out from the human brain with the help of electroencephalography technique. The person can perform operations like walking, running etc just by their thought. This system will be very much suitable for those who lost their legs in accidents and the proposed system is hundred percent feasible in the real time environment with the currently available technology.
The Brain Controlled Artificial Legs are very much cost effective when compared to the normal Artificial legs which is available in the market. The reduction in cost of the proposed system is found to be above 80% when compared to the existing system. Moreover, the user can have full control over the artificial legs which is not possible in the existing system.
Introduction:
A brain-computer interface (BCI), sometimes called a direct neural interface or a brain-machine interface, is a direct communication pathway between a human or animal brain and an external device. In this definition, the word brain means the brain or nervous system of an organic life form rather than the mind. Computer means any processing or computational device, from simple circuits to the complex microprocessors and microcontrollers.
An interesting question for the development of a BCI is how to handle two learning sys-tems: The machine should learn to discriminate between different patterns of brain activity as ac-curate as possible and the user of the BCI should learn to perform different mental tasks in order to