By Mikayla Messing
8/3/12
Section 623
Abstract To examine the effectiveness of buffers by titrating two sets of five different solutions using HCl and NaOH and monitoring the pH change of the various solutions. The data collected shows that the buffer systems made with sodium acetate and acetic acid were effect when titrated with the strong acid and the strong base. Comparison of all the solutions shows that the concepts of buffers holds true for the results from the experimentation.
Introduction
The main objective of this lab was to test the ability of buffered and unbuffered solutions to resist changes in pH with the addition of strong acids and strong acid. This will be accomplished by making two sets of five different solutions. They will be made using water, a salt solution (sodium chloride), and various concentrations of a buffer. Once the solutions are made, one set of the five will be used to observe the changes in pH made by adding hydrochloric acid (HCl) drop by drop. The second set of the five solutions will be used to observe the changes in pH made by adding sodium hydroxide (NaOH) drop by drop.
It is predicted that the first two solutions with water and the salt solution will experience immediate drastic changes in their pH. This will happen because neither solution has conjugates in their systems. The other three solutions will resist a change in pH until its buffer capacity is reached. The solution with the highest concentration of the buffer will be the most effective at resisting pH changes. This is because buffers become more effective as their concentration increases. Therefore, the buffer system with the greatest amount of sodium acetate will be the most effective buffer.
Method
Five different buffer solutions were made twice to make ten buffer solutions; one set was be used to observe the changes in pH caused by adding a strong acid (HCl) and the other set was used to observe the changes in pH caused by adding a
References: Kautz, J., D. Kinnan, and C. McLaughlin. Chemistry 110 Laboratory Manual Hayden-McNeil, 2010. Print. Tro, Nivaldo. Chemistry: A Molecular Approach. Upper Saddle River, NJ: Pearson Education, Inc., 2008. Print.