ATP is hydrolyzed leading to phosphorylation of the cytoplasmic side of the pump, this induces a structure change in the protein. The phosphorylation is caused by the transfer of the terminal group of ATP to a residue of aspartate in the transport protein and the subsequent release of ADP. the structure change in the pump exposes the Na+ to the exterior. The phosphorylated form of the pump has a low affinity for Na+ ions so they are released. once the Na+ ions are liberated, the pump binds two molecules of K+ to their respective bonding sites on the extracellular face of the transport protein.This causes the dephosphorylation of the pump, reverting it to its previous conformational state, transporting the K+ ions into the cell.
The unphosphorylated form of the pump has a higher affinity for Na+ ions than K+ ions, so the two bound K+ ions are released into the cytosol. ATP binds, and the process starts again.