Photosynthesis is a two part process which includes photophosphorylation (light reactions) and carbon fixation (dark reactions). Sunlight in the form of light energy is used to fuel the photophosphorylation process where 2 water molecules break down into 4 H+ ions, 1 oxygen molecule, and 4 electrons. These excited electrons are transferred through the electron transfer chain to provide energy to reduce NADP+ to NADPH and H+ ions are pumped into the thylakoid lumen. These H+ ions create a concentration gradient which is used to pump back H+ ions into the stoma to regenerate ATP. The next process is called the carbon fixation. Carbon dioxide is reduced to form two 3-carbon sugar phosphate molecules which turns into our glucose at the end of photosynthesis.
Cellular respiration is a three part process which includes glycolysis, Kreb's cycle, and oxidative phosphorylation. In glycolysis glucose is broken down in a ten step process into 2 3-carbon pyruvate molecules. During glycolysis a net gain of 2 ATP is formed. NAD+ is reduced to NADH and 2H+ ions which in turn go to the oxidative phosphorylation process. After glycolysis, the 2 pryuvate molecules enter the Kreb's cycle. In the presence of oxygen, acetyl-CoA are formed through glycolysis and these are oxidized by carbon dioxide while at the same time reducing NAD+ to NADH. A net gain of 6 NADH, 2 FADH2, and 2 ATP is formed through the Kreb's cycle. The last step is oxidated phosphorylation, where all the NADH and FADH2 molecules created from glycolysis and the kreb's cycle are oxidized. Electrons transferred through the ETC create a concentration gradient. Protons move from the Intermembrane Space through the Inner Mitochondrial Membrane into the Mitochondrial Matrix. The H+ ions move across the ATP synthase to generate ATP. The net gain of ATP from cellular respiration is 38 ATP.
Even though cellular respiration and photosynthesis are related in a few ways such as they both use energy transformation, processes occur in double membraned organelles, and both processes use chemiosmosis. They are also different in the fact that photosynthesis creates glucose and releases oxygen into the atmosphere while cellular respiration creates energy and releases carbon dioxide and water into the atmosphere. In photosynthesis, the calvan cycle anabolizes the carbon molecules where as in cellular respiration, glycolysis and the Kreb's cycle catabolize the carbon molecules. Therefore, cellular respiration and photosynthesis are similar yet different in many ways.
You May Also Find These Documents Helpful
-
The process of photosynthesis occurs when six carbon dioxide molecules (CO2), six water molecules (H2O), and light energy are added together and result in glucose (C6H12O6) and six oxygen (O2) molecules. There are two stages to this process; light reactions and dark reactions. Light reactions start with chloroplast which absorbs the light. Inside the chloroplast are thylakoids that contain pigments which absorb certain wavelengths of light. Each cluster of pigments is called a photosystem. Photosystem I and II obtain some of the light’s energy. Light first enters chlorophyll A in photosystem II and the electrons inside become excited enough to leave it. Some of the electrons, which just left, enter a chain of reactions called the electron transport chain and it produces ATP. The electrons that couldn’t fit into the ETC move onto photosystem I. Those electrons then get excited by light energy and enter the ETC where they add a hydrogen atom to NADP to form NADPH.…
- 411 Words
- 3 Pages
Good Essays -
This document of BIO 100 Assignment Photosynthesis and Cellular Respiration includes answers to the next questions: Complete the matrix. Use the following questions to aid in completion:…
- 486 Words
- 2 Pages
Good Essays -
Cellular respiration is divided into three different stages. Glycolysis, the first stage of cellular respiration, splits simple carbohydrates such as glucose into two molecules of ATP, two molecules of pyruvic acid, and two electron carried that have high energy that are known as NADH. This part of cellular respiration does not need oxygen, therefore ATP can be created by glycolysis, but it only makes a small amount and this method is not the most efficient method. The next stage in cellular respiration is the Citric Acid Cycle. This stage commences when the two pyruvate acids are converted into acetyl CoA. This pyruvate oxidation will produce 2 NADH and then the acetyl CoA will enter…
- 1940 Words
- 8 Pages
Powerful Essays -
Aerobic cellular respiration is a pivotal process in which organisms carry out in order to sustain life. It is characterized by the release of energy from organic compounds by means of chemical oxidation within the mitochondria of the cell. The reactants are glucose and oxygen, and after a series of complex steps, the products of carbon dioxide, water, and ATP + heat are released. Thus, cellular respiration is an exergonic process, since heat energy is released in order to do cellular work. The overall process can be encapsulated by the following equation: C6H12O6 + CO2 6CO2+ 6H2O+ 586 kilocalories of energy/mole of glucose oxidized. This reaction seems very straightforward, however there are numerous enzyme-mediated reactions that occur within it that are not so perceptible from the simplified equation. Cellular respiration consists of three major stages: The first is Glycolysis; (occurring in the cytosol) in which chemical energy is harvested by oxidizing glucose into two 3 carbon molecules of pyruvate, and thus producing a net of 2 ATP molecules through substrate-level phosphorylation, as well as a net of 2 NADH molecules. Subsequently, the Krebs Cycle commences after 2 pyruvate molecules are converted to 2 Acetyl CoA molecules in the intermembrane space of the mitochondria. During the Krebs Cycle (occurring in the mitochondrial matrix)4 CO2 molecules are released, 1 ATP molecule is formed (for each turn of the cycle), and the reduced forms of 6 NADH and 2 FADH carry the electrons to the next step: the Electron Transport Chain. This occurs in the inner membrane of the mitochondria, and consists of many electron carriers that pass electrons (donated by NADH and FADH2) along through a series of redox reactions. At the end of the chain, oxygen acts as a final electron acceptor and it reduced them to form water. A proton motive force, or H+ gradient,…
- 733 Words
- 2 Pages
Good Essays -
Cellular respiration includes the processes of glycolysis, krebs cycle, and the electron transport chain. Glycolysis is used to convert glucose to produce two pyruvate as well as 4 ATP’s and 2 NADH but uses 2 ATP to have a net product of 2 ATP and 2 NADH. The krebs cycle converts pyruvate to Acetyl CoA, which produces 2 ATP,8 NADH, and 2 FADH’s per glucose molecule. Electron transport Chain is the last and most important step of cellular respiration, it makes ATP with the movement of electrons from high energy to low energy that makes a proton gradient which makes ATP, this cannot occur unless oxygen is present. Fermentation is an anaerobic process in which converts sugars into acids, alcohol, or alcohol. This process occurs in yeast and bacteria as well as muscle cells that have no oxygen left. In yeast fermentation produces ethyl alcohol and carbon dioxide from glucose and fructose. Fermentation in bacteria cells the process of fermentation produces ethanol, while in human muscle cells fermentation produces lactic acid in cells that have a short…
- 1719 Words
- 7 Pages
Better Essays -
Photosynthesis and cellular respiration have an inverse relationship, they are opposite of each other. Photosynthesis is the process by which carbon dioxide is converted into compounds from the sunlight. The most frequent compound being glucose (sugar). Photosynthesis occurs in plants, algae, and some bacteria. Editorial Board (2014).…
- 1346 Words
- 6 Pages
Better Essays -
Cellular Respiration is a process by which cells obtain energy from glucose. Cells are broken down into simple food molecules. Cellular Respiration undergoes two processes: Glycolysis and The Krebs Cycle. In Glycolysis enzymes help in chemical reactions that break down oxygen and glucose into different molecules. Pyruvic and 2 molecules of ATP are produced during Glycolysis. In the Krebs cycle nine reactions occur. Pyruvic acid is broken down and carbon dioxide and energy are given off. This energy is then used to create ATP and water.…
- 342 Words
- 2 Pages
Satisfactory Essays -
This cycle also called the “Krebs cycle”, completes the breakdown of glucose all the way to CO2, one of the waste products off cellular respiration. The enzymes for the citric acid cycle are dissolved in the fluid within mitochondria. Glycolysis and the citric acid cycle generate a small amount of ATP directly. They generate much more ATP indirectly, via redox reactions that transfer electrons from fuel molecules to NAD+, forming NADH.…
- 850 Words
- 4 Pages
Good Essays -
Glycolysis is where glucose is split into two molecules of 3-carbon sugars. This produces 2ATP, 2 pyruvic acid, and 2 high energy. In The Citric Acid Cycle, Acetyl CoA is created. NAD and FAD are reduced carrying the high energy electrons to the next stage. In the Electron Transport, high energy electrons are passed to oxygen where ATP is then produced.…
- 286 Words
- 2 Pages
Satisfactory Essays -
Purpose: Students will be able to describe photosynthesis and cellular respiration and explain how they are related.…
- 308 Words
- 2 Pages
Satisfactory Essays -
3 NADH and 1 FADH2 17. In which stage of aerobic cellular respiration will the energy carriers be used? Electron transport chain and chemiosmosis 18. What waste product is expelled during the Krebs cycle and how many molecules of it are produced per molecule of acetyl CoA? 2 CO2 19.…
- 339 Words
- 2 Pages
Satisfactory Essays -
C6H12O6+O2 How do cellular respiration and photosynthesis work as one large cycle? • Cellular respiration and photosynthesis work as one large cycle because in photosynthesis the plants release the chemical oxygen, which is necessary for us to survive. When a person breathes in that oxygen it is then delivered to their cells. This is called cellular respiration which produces ATP that in return releases water and carbon dioxide.…
- 1541 Words
- 7 Pages
Good Essays -
Photosynthesis is the process by which plants create food for themselves which occurs in the cytoplast organ of the cell. They absorb carbon dioxide, water, and solar energy to produce glucose and oxygen (Doc C). Cellular respiration on the other hand, is the process occurring in the mitochondria by which organisms create energy to power cellular processes. This process takes in glucose and oxygen to create carbon dioxide, water, and energy in the form of ATP (Doc C). These processes follow the law of conservation of matter and energy as the amount of products is always equal to the amount of reactants in a chemical equation. So the amount of glucose and oxygen created during photosynthesis is equal to the amount of carbon dioxide and water used and the amount of carbon dioxide and water produced during cellular respiration is equal to the amount of glucose and oxygen used. Many people notice that the products of cellular respiration are the reactants of photosynthesis and the products of photosynthesis are the reactants of cellular respiration. This is because the two processes work together to provide organisms with food and…
- 784 Words
- 4 Pages
Good Essays -
Photosynthesis is an anabolic process where plants produce sugars from carbon dioxide, light energy and water. The sugars are used for other anabolic reactions e.g. protein synthesis and the energy required for these reactions comes from ATP which is synthesised from chemical energy into ATP during respiration. The ATP used in plants is made from the conversion of light energy from the sun, to chemical energy by plants, into the form of organic molecules during respiration in all cells. The ATP produced can then be used by cells to perform useful work e.g.…
- 883 Words
- 4 Pages
Good Essays -
Cellular respiration is an ATP-producing catabolic process in which the electron receiver is an inorganic molecule. It is the release of energy from organic compounds by chemical oxidation in the mitochondria within each cell. Carbohydrates, proteins, and fats can all be metabolized, but cellular respiration usually involves glucose: C6H12O6 + 6O2 → 6CO2 + 6H2O + 686 Kcal of energy/mole of glucose oxidized. Cellular respiration involves glycolysis, the Krebs cycle, and the electron transport chain. Glycolysis is a catabolic pathway that occurs in the cytosol and partially oxidizes glucose into two pyruvate (3-C). The Krebs cycle occurs in the mitochondria and breaks down a pyruvate (Acetyl-CoA) into carbon dioxide. These two cycles both produce a small amount of ATP by substrate-level phosphorylation and NADH by transferring electrons from substrate to NAD+. The Krebs cycle also produces FADH2 by transferring electrons to FAD. The electron transport chain is located at the inner membrane of the mitochondria and accepts energized electrons from enzymes that are collected during glycolysis and the Krebs cycle, and…
- 1687 Words
- 7 Pages
Powerful Essays