Top-Rated Free Essay
Preview

Cellular Respiration

Good Essays
737 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Cellular Respiration
Cellular Respiration
Cellular respiration is a chemical process that produces adenosine triphosphate, or otherwise known as ATP for energy that is also needed to survive. It leaves waste products, carbon dioxide and water, which is needed for photosynthesis, a process that only plants use. Production of ATP through the process of cellular respiration occurs in the mitochondria of the cytosol inside plant and animal cells. Cellular respiration occurs in three stages, Glycolysis, which happens in the cytosol, Krebs cycle, which takes place in the matrix of the mitochondria, and electron transport chain, which happens in the cristae of the mitochondria. The first stage of this process is Glycolysis:
Glycolysis first breaks down a glucose molecule, which is a very important sugar molecule for living things. Since glucose is a six-carbon molecule, it splits into two pyruvic acids (pyruvate). In this stage, two ATP molecules are used and four ATP molecules are made, so it makes a sum of two ATP molecules. Pyruvic acid gives high-energy electrons to NAD positive which makes two NADH. In conclusion, glycolysis produced two ATP molecules, two NADH, and two pyruvate molecules.
The Krebs cycle, the second stage of respiration, first starts with breaking down pyruvic acid from the glycolysis into Acetyl CoA. It is to make the pyruvate more usable in the Krebs cycle but in this “process”, carbon dioxide diffuses out. After acetyl CoA forms, the eight steps of the cycle start. First, Acetyl CoA is transferred to the oxaloacetate group by CoenzymeA to form citrate. NAD+ (Nicotinamide adenine dinucleotide), an enzyme carrier, is used and turned into NADH when an electron is loaded on it. The electrons are taken to the electron transport chain. Oxalosuccinate molecules go to Succinyl CoA when two carbon dioxides are taken out and an electron carrier (NAD+) is loaded with electrons. Succinyl CoA follows up. In this part, GTP (guanosine triphosphate) turns into GDP (guanosine diphosphate) and vice versa. ADP (Adenosine diphosphate) changes into ATP and succinyl CoA then makes the molecule succinate. From succinate to malate, FAD is loaded with an electron and changes into FADH2 and sent to the electron transport chain. Malate is the last of the cycle and it is repeated after that. NAD+ is loaded with an electron once again and sent to the electron transport chain. The results are two ATP molecules.
The electron transport chain is aerobic, which means it requires oxygen. Most of the ATP is made here. It is a series of electron carriers in the cristae. Through a series of reactions, the electrons are passed to oxygen from one carrier protein to another. The carriers of electrons are NADH and FADH2. Electrons flow through the chain and pumps hydrogen ions from the inside out into the mitochondria (outer compartment). Then, through ATP synthase, the hydrogen molecules are back into the inner compartment and ATP is formed. At the end of the chain, oxygen (O2) is waiting, accepting H+ and electrons, which forms H2O. In the electron transport chain, about 32-34 ATP molecules are produced. The ATP is then stored into the form of a hydrogen ion gradient.
After glycolysis, fermentation can occur when the presence of oxygen is not around. This is known as anaerobic respiration since throughout this process, oxygen is not required. Even though, this is an alternative to aerobic respiration, fermentation is only used sparingly. There are two forms of fermentation, lactic acid fermentation and alcoholic fermentation. Lactic acid fermentation can occur in humans, when muscles are under strenuous activities such as sprinting. This process starts with pyruvate, where NADH drops off the hydrogen transferring it to pyruvate. As for results, it ends with two ATP molecules, lactate, and NAD. While, others like yeast and beer go through alcoholic fermentation while brewing and baking. Alcoholic fermentation goes through a similar process, but the hydrogen molecule from NADH is transferred into pyruvate to form ethanol, carbon dioxide, two ATP molecules, and NAD. Fermentation can help produce ATP for cells that need energy when oxygen is short in supply, but both forms of fermentation only yield a sum of two ATP molecules with each glucose molecule. Which means fermentation produced much less energy than cellular respiration in total. Since cellular respiration produced a net of thirty-six to thirty-eight molecules of ATP per glucose molecule while fermentation only produced a net of four which include alcoholic and lactate fermentation.

You May Also Find These Documents Helpful

  • Good Essays

    SCI/230 Cell worksheet

    • 885 Words
    • 4 Pages

    The citric acid cycle begins after the first stage of glycolysis is completed. The two carbon molecules are converted into acetyl CoA compound. Two ATPs are produced per each molecule of glucose by the citric acid cycle. When these compounds are reduced, they are transported by electron carriers to the next stage. The citric acid cycle occurs only when oxygen is present in the mitochondrion after the cell splits during the first phase glycolysis.…

    • 885 Words
    • 4 Pages
    Good Essays
  • Better Essays

    Cell Energy Worksheet

    • 1063 Words
    • 5 Pages

    The Citric Acid Cycle starts after the glycolysis cycle produces the acetyl CoA compound. The Coenzyme A is removed and the remaining carbon skeleton is attached to another 4-carbon molecule. The new 6-carbon chain releases carbon dioxide. Two ATP’s are produced during this process for each molecule of glucose. The end result of the citric acid cycle is 4 CO molecules, 6 NADH molecules, 2 ATP molecules and 2 FADH2 molecules. The process is part of the conversion of carbs, fats, and proteins into carbon dioxide and water; which is usable energy.…

    • 1063 Words
    • 5 Pages
    Better Essays
  • Good Essays

    Sci 230 Essay Example

    • 897 Words
    • 4 Pages

    Each of the pyruvic acid molecules will be processed in two separate citric acid cycles. Here the three carbon pyruvic acid molecule is processed to produce ATP and Carbon Dioxide molecules. This Cycle uses ATP to specifically break down the pyruvate into Acetyl Co-A. Once this goes through the cycle, limited ATP as well as more NADH are produced. This happens in the mitochondria when sufficient oxygen is present to form the Carbon Dioxide.…

    • 897 Words
    • 4 Pages
    Good Essays
  • Good Essays

    opposite process. The end result of Cellular Respiration is 38 ATPs that can then be used for…

    • 516 Words
    • 3 Pages
    Good Essays
  • Good Essays

    Respirationlabbackground

    • 733 Words
    • 2 Pages

    Aerobic cellular respiration is a pivotal process in which organisms carry out in order to sustain life. It is characterized by the release of energy from organic compounds by means of chemical oxidation within the mitochondria of the cell. The reactants are glucose and oxygen, and after a series of complex steps, the products of carbon dioxide, water, and ATP + heat are released. Thus, cellular respiration is an exergonic process, since heat energy is released in order to do cellular work. The overall process can be encapsulated by the following equation: C6H12O6 + CO2 6CO2+ 6H2O+ 586 kilocalories of energy/mole of glucose oxidized. This reaction seems very straightforward, however there are numerous enzyme-mediated reactions that occur within it that are not so perceptible from the simplified equation. Cellular respiration consists of three major stages: The first is Glycolysis; (occurring in the cytosol) in which chemical energy is harvested by oxidizing glucose into two 3 carbon molecules of pyruvate, and thus producing a net of 2 ATP molecules through substrate-level phosphorylation, as well as a net of 2 NADH molecules. Subsequently, the Krebs Cycle commences after 2 pyruvate molecules are converted to 2 Acetyl CoA molecules in the intermembrane space of the mitochondria. During the Krebs Cycle (occurring in the mitochondrial matrix)4 CO2 molecules are released, 1 ATP molecule is formed (for each turn of the cycle), and the reduced forms of 6 NADH and 2 FADH carry the electrons to the next step: the Electron Transport Chain. This occurs in the inner membrane of the mitochondria, and consists of many electron carriers that pass electrons (donated by NADH and FADH2) along through a series of redox reactions. At the end of the chain, oxygen acts as a final electron acceptor and it reduced them to form water. A proton motive force, or H+ gradient,…

    • 733 Words
    • 2 Pages
    Good Essays
  • Better Essays

    Cellular respiration includes the processes of glycolysis, krebs cycle, and the electron transport chain. Glycolysis is used to convert glucose to produce two pyruvate as well as 4 ATP’s and 2 NADH but uses 2 ATP to have a net product of 2 ATP and 2 NADH. The krebs cycle converts pyruvate to Acetyl CoA, which produces 2 ATP,8 NADH, and 2 FADH’s per glucose molecule. Electron transport Chain is the last and most important step of cellular respiration, it makes ATP with the movement of electrons from high energy to low energy that makes a proton gradient which makes ATP, this cannot occur unless oxygen is present. Fermentation is an anaerobic process in which converts sugars into acids, alcohol, or alcohol. This process occurs in yeast and bacteria as well as muscle cells that have no oxygen left. In yeast fermentation produces ethyl alcohol and carbon dioxide from glucose and fructose. Fermentation in bacteria cells the process of fermentation produces ethanol, while in human muscle cells fermentation produces lactic acid in cells that have a short…

    • 1719 Words
    • 7 Pages
    Better Essays
  • Good Essays

    Bio Lab

    • 962 Words
    • 4 Pages

    ATP is generated from aerobic respiration from the use of biosynthetic pathways. Glycolysis is where respiration starts in the cells and produces ATP, NADH, and 2 pyruvate molecules from the oxidation of six carbon carbohydrate and glucose. Even if oxygen is there or not, enzymes are mediated in the cytoplasm. The electron transport chain, chemiosmosis, and aerobic respiration use NADH molecule (which it main purpose is to transport electrons form one molecule to another) for later purposes. The mitochondrial matrix receives pyruvate from the cytoplasm after it crosses over the mitochondrial membrane. When the pyruvate enters the Krebs cycle it goes through many stages of biochemical enzyme-catalyzed reactions. In more detail about the cycle its main purpose is to produce little amounts of ATP by removing carbon dioxide and hydrogen from pyruvate molecules. Within the inner membrane of the mitochondrion the electron transport chain and chemiosmosis synthesis ATP with hydrogen ions which are NADH and FADH2. The Krebs cycle and glycolysis produce less ATP because chemiosmosis synthesizes a great amount of ATP.…

    • 962 Words
    • 4 Pages
    Good Essays
  • Good Essays

    There are three stages of cellular respiration and these are, glycolysis, the krebs cycle and the electron transport chain (ETC). Glycolysis is the first step in a biomedical pathway of respiration. It occurs in the cells cytoplasm and no oxygen is needed for this. The next stage is the Krebs cycle, this takes place in the mitochondrial matrix and is a cycle of reactions. One ATP is created for every complete cycle and oxygen is needed for this. The last stage of cellular respiration is ETC, this also occurs in the mitochondrial matrix and the molecules are passed next along the ETC. Oxygen is also needed for this. Cellular respiration is an example of an catabolic reaction as it is the breakdown of larger molecules to Mooresville smaller ones.…

    • 1101 Words
    • 5 Pages
    Good Essays
  • Powerful Essays

    Unit two Biology

    • 7492 Words
    • 30 Pages

    In and takes place inATP cytoplasm.are used glucose this process, two molecules and four produced. Reduced NAD is also formed. take place, and the • When oxygen is available, aerobic respiration canto acetyl CoA inthe pyruvate is moved intoacetyl matrix of a mitochondrion where it is converted the link reaction. The 2C CoA combines with the 4C compound oxaloacetate and enters the Krebs cycle.…

    • 7492 Words
    • 30 Pages
    Powerful Essays
  • Good Essays

    Cell Work Sheet

    • 850 Words
    • 4 Pages

    This cycle also called the “Krebs cycle”, completes the breakdown of glucose all the way to CO2, one of the waste products off cellular respiration. The enzymes for the citric acid cycle are dissolved in the fluid within mitochondria. Glycolysis and the citric acid cycle generate a small amount of ATP directly. They generate much more ATP indirectly, via redox reactions that transfer electrons from fuel molecules to NAD+, forming NADH.…

    • 850 Words
    • 4 Pages
    Good Essays
  • Satisfactory Essays

    Glycolysis is where glucose is split into two molecules of 3-carbon sugars. This produces 2ATP, 2 pyruvic acid, and 2 high energy. In The Citric Acid Cycle, Acetyl CoA is created. NAD and FAD are reduced carrying the high energy electrons to the next stage. In the Electron Transport, high energy electrons are passed to oxygen where ATP is then produced.…

    • 286 Words
    • 2 Pages
    Satisfactory Essays
  • Satisfactory Essays

    Cellular Respiration

    • 1120 Words
    • 5 Pages

    Copy the picture of its molecular formula, copy the web page address and put it next to the picture.…

    • 1120 Words
    • 5 Pages
    Satisfactory Essays
  • Good Essays

    Glucose, or any carbon-based molecule, can be burned in oxygen (oxidized) to produce carbon dioxide and water. Combustion reactions release large amounts of energy. However, the energy release is uncontrolled. An organism would not be able to handle all that energy at once to do the work of the cell. Cellular respiration is essentially the same reaction as combustion, but the oxidation of glucose occurs in several controlled steps. The same amount of energy is ultimately released, but it is gradually released in small, controlled amounts. High potential energy molecules of ATP are produced while the carbon atoms are used to form various other molecules of lower potential energy. Each of these steps is catalyzed by an enzyme specific to that step. Model 1 illustrates the ideal circumstances for cellular respiration. In some situations, however, one glucose molecule may not result in 38 ATP molecules being…

    • 1212 Words
    • 5 Pages
    Good Essays
  • Powerful Essays

    Cellular respiration is an ATP-producing catabolic process in which the electron receiver is an inorganic molecule. It is the release of energy from organic compounds by chemical oxidation in the mitochondria within each cell. Carbohydrates, proteins, and fats can all be metabolized, but cellular respiration usually involves glucose: C6H12O6 + 6O2 → 6CO2 + 6H2O + 686 Kcal of energy/mole of glucose oxidized. Cellular respiration involves glycolysis, the Krebs cycle, and the electron transport chain. Glycolysis is a catabolic pathway that occurs in the cytosol and partially oxidizes glucose into two pyruvate (3-C). The Krebs cycle occurs in the mitochondria and breaks down a pyruvate (Acetyl-CoA) into carbon dioxide. These two cycles both produce a small amount of ATP by substrate-level phosphorylation and NADH by transferring electrons from substrate to NAD+. The Krebs cycle also produces FADH2 by transferring electrons to FAD. The electron transport chain is located at the inner membrane of the mitochondria and accepts energized electrons from enzymes that are collected during glycolysis and the Krebs cycle, and…

    • 1687 Words
    • 7 Pages
    Powerful Essays
  • Better Essays

    Prepares H+ and e- molecules for entry to ETC, six NADH, two FADH2, two ATP and four CO2…

    • 3704 Words
    • 15 Pages
    Better Essays