Centrifugal Force Apparatus HFC21
Objective:
The object of the experiment is to verify that the centrifugal force varies in direct proportion to 1. The mass of the rotating body M (Experiment parts 1 and 2) 2. The square of the speed of rotation ω (Experiment part 3) 3. The radius of gyration k (Experiment part 4) In accordance with the formula; F = Mω2k
Apparatus:
Centrifugal Force Apparatus HFC21, Cast iron calibrated weights arranged as in Figs.1 and 2.
Figure 1 Centrifugal Force Apparatus HFC21
Figure 2 Centrifugal Force HFC21 detail
Theory:
According to Newton's first law of motion, a moving body travels along a straight path with constant speed (i.e., has constant velocity) unless it is acted on by an outside force. For circular motion to occur there must be a constant force acting on a body, pushing it toward the center of the circular path. This force is the centripetal (“center-seeking”) force. For a planet orbiting the sun, the force is gravitational; for an object twirled on a string, the force is mechanical; for an electron orbiting an atom, it is electrical. The magnitude F of the centripetal force is equal to the mass m of the body times its velocity squared v 2 divided by the radius r of its path: F=mv2/r. According to Newton's third law of motion, for every action there is an equal and opposite reaction. The centripetal force, the action, is balanced by a reaction force, the centrifugal (“center-fleeing”) force. The two forces are equal in magnitude and opposite in direction. The centrifugal force does not act on the body in motion; the only force acting on the body in motion is the centripetal force. The centrifugal force acts on the source of the centripetal force to displace it radially from the center of the path. Thus, in twirling a mass on a string, the centripetal force transmitted by the string pulls in on the mass to keep it in its circular path, while the centrifugal force