SCHOOL OF FINANCE AND APPLIED ECONOMICS
Year 4, Semester 2
Empirical Finance
Group Assignment
Chaos Dynamics and Stochastic Volatility
Application to Financial Markets
January 29, 2014
Group Members
059831
059882
060139
061074
Oile, Kenneth Ogola
Ndirangu, Evelyn Chaki
Nzesya, Lilian Mwikali
Chege, Eric Theuri
Lecturer
Mr Ferdinand Othieno
Table of Contents
Abstract .............................................................................................................................................................. ii
1
Chaos and Non-Linear Dynamics ..................................................................................................... 1
1.1
Introduction .................................................................................................................................... 1
1.2
The Random Walk Hypothesis ................................................................................................ 1
1.3
Random vs. Unpredictable ........................................................................................................ 2
1.4
Chaos Theory.................................................................................................................................. 2
1.5
Mathematical Abstraction ......................................................................................................... 3
1.5.1 The BDS Statistic....................................................................................................................... 5
1.6
1.7
2
Empirical Examples Demonstrating Random Market Hypothesis Failures ........... 6
Conclusions and Remarks ......................................................................................................... 7
Stochastic Volatility ............................................................................................................................... 8
2.1
Bibliography: Andersen, T. G., Bent, E. S., & Chung, H.-J. (1996). Efficient Method of Moments Estimation of a Stochastic Volatility Model: A Monte Carlo Study Brock, W. A., Dechert, W., & Scheinkman, J. (1987). A Test of Independence Based on the Correlation Dimension Brooks, C. (2008). Introductory Econometrics for Finance (2nd ed.). Cambridge: Cambridge University Press. Chernov, M., & Ghysels, E. (2000). Estimation of Stochastic Volatility Models for the Purpose of Option Pricing. Choi, I. (1999). Testing the Random Walk Hypothesis for Real Exchange Rates. Journal of Applied Econometrics, 14(3), 293-308. Duffie, D., & Singleton, K. J. (1993). Simulated Moments Estimation of Markov Models of Asset Prices Geweke, J. (1986). Modeling the Persistence of Conditional Variance. Econometric Review, 5, 57-61. Ghysels, E., Harvey, A., & Renault, E. (1996). Stochastic Volatility. In G. Maddala, & C. Rao (Eds.), Statistical Methods in Finance (pp Giannopoulos, K. (2000). Measuring Volatility. In KPMG, M. Lore, & L. Borodovsky (Eds.), The Professional 's Handbook of Financial Risk Management (pp Grassberger, P., & Procaccia, I. (1983). Measuring the Strangeness of Strange Attractors. Hsieh, D. (1991). Chaos and Nonlinear Dynamics: Application to Financial Markets. The Journal of Finance, 46(5), 1839-1877. Jacquier, E., Polson, N., & Rossi, P. (1994). Bayesian Analysis of Stochastic Volatility Models Larrain, M. (1991). Testing Chaos and Nonlinearities in T-Bill Rates‟. Financial Analysts Journal, 47(5), 51-62. Mandelbrot, B. B. (1963). The Variation of Certain Speculative Prices. Journal of Business, 36(4), 394-419. Men, Z. (2012). Bayesian Inference for Stochastic Volatility. Monks, R. A. (2010). Corporate Valuation for Portfolio Investment: Analyzing Assets, Earnings, Cash Flow, Stock Price, Governance, and Special Situations O 'Fathaigh, C. D. (2010). The Edge of Chaos – An Alternative to Random Walk Hypothesis. Peters, E. (1991). A Chaotic Attractor for the S&P 500. Financial Analysts Journal, 47(2), 55-62+81. Rachev, S. T., Hsu, J. S., Bagasheva, B. S., & Fabozzi, F. J. (2008). Bayesian Methods in Finance SAS. (2014). Efficient Method of Moments Estimation of a Stochastic Volatility Model. Taylor, S. (1982). Financial Returns Modeled by the Product of Two Stochastic Processes — A Study of Daily Sugar Prices 1961-79 Taylor, S. (1986). Modeling Financial Time Series. New York: John Wiley. Tsay, R. S. (2005). Analysis of Financial Time Series. Hoboken: John Wiley & Sons, Inc. Wallich, H. (1968). What Does the Random Walk Hypothesis Mean to Security Analysts? Financial Analysts Journal, 24(2), 159-162. Wikipedia. (2014). Markov Chain Monte Carlo. Retrieved January 2014, from Wikipedia: http://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo Wikipedia. (2014). Method of Simulated Moments. Retrieved January 2014, from Wikipedia: http://en.wikipedia.org/wiki/Method_of_simulated_moments