% Of water in barium chloride dehydrate BaCl2 * 2H2O
*Mass of beaker, watch glass + hydrate 154.14g
(before heating)
*Mass of beaker + watch glass 152.72g
*Mass of hydrate
After measure the unknown component, transferring the sample into the beaker with the hot water to dissolve the sample completely and then letting it cool by putting the beaker into the ice. After that, collect the solid by vacuum filtration and the filtered product was weighed 1.1759g…
The purpose of this lab was to learn how to determine the percent of water in a hydrate.…
5) Weigh the beaker with the salt inside of it. Then, clean out the beaker thoroughly…
get the mass of a evaporating dish, put a sample of the hydrate onto the evaporating dish and mass the dish with hydrate.…
The objective of this lab was to conduct an experiment to analyze the molar components in alum. This was conducted by heating the alum till the water had evaporated and then determining the number of moles for each component. Then using the these amounts to figure out the empirical formula for alum.…
The purpose of this experiment is to provide an opportunity to practice proper heating and cooling techniques and to calculate the formula of a known anhydrous compound and to calculate the percent of water in an unknown hydrate from results.…
First we chose an unknown metal, in which our unknown was unknown metal 2, the metal was gray and irregular shaped. We setup the calorimeter and got a mass of it just being empty then we got a mass with 30mls of water in it. We found the mass of the water by subtracting the mass of the empty calorimeter which was 49.987g and the mass of the calorimeter with water which was 87.332g and got the mass of just the water 37.345g. The metal was placed in a test tube 5cm high and we got the mass of the empty test tube that was 42.703g and then with the metal in it and it was 72.607g. We heated the 300ml of water to a boil, then placed the metal that was in a tube and waited 10 minutes before we took it out. The temperature of the water before the metal was placed was 20 degrees Celsius, when we put the hot metal into the water and stirred it with the stirring rod it was 29 degrees Celsius, the change of the temperature after the metal was placed was 9 degrees. We ran this experiment twice to compare the results. In the second experiment we found that the mass of the calorimeter and water with 50mls was 100.033g and the empty calorimeter was 50.857g. We subtracted them two and we got the mass of water was 49.176g. The temperature of the water before the metal was placed in was 21 degrees Celsius and then when the metal was heated up for 10 minutes the temperature went up to 28 degrees Celsius. The change in temperature in the second trial was 7 degrees Celsius.…
The purpose of the experiment was to find the percent of water in Epsom salts by heating it. To find the percent of water in a hydrate, the hydrate must be heated. The experiment did not only show how dehydration occurs, but this experiment also gives an accurate and definite portrayal of the amount of water that is removed…
Conclusion: The purpose of this lab was to visually see the chemical change that was taking place when hydrates gain and lose water.The formula for blue hydrate is anhydrous copper (ii) sulfate (CuSO4). The percent error for the mass of water is -94.40%. The effect of the hydrate not being heated long enough would result in water still being in the hydrate. If the test tube was not dried completely prior to the initial measurement it would cause the data to follow that incorrect measurement to be false and it would also add more water into the hydrate than what was initially projected. If the anhydride was allowed to sit over before the final mass measurement was taken it would result in more water loss from the hydrate. The moles of CuSO4…
3. While the water is heating, measure the mass of the metal cylinder to the nearest 0.01 g and record the measurement.…
A hydrate was given to our group and the identity of the hydrate was unknown. The lab workers were told to determine the identity of the unknown hydrate. The identity of the hydrate could be determined by calculating the hydrate’s percent of water. So the lab workers set out to determine the water percent of the unknown hydrate.…
Hydrates are compound with a constant composition. Concepts of Law of Definite Proportions (hydrates remain in constant proportions) and Law of Conservation of Mass (this idea is used to determine the mass of water in the compound and, subsequently, the formula of the compound) are expressed in this experiment. In this experiment, the goal was to find the formula of copper sulfate pentahydrate by heating a sample of the blue compound in order to evaporate the water and receive the white-colored copper sulfate anhydrous. Using the mass of the original sample of copper sulfate pentahydrate subtracted by the new mass of the copper sulfate anhydrous, the mass of water lost is obtained and used to find the empirical formula. The expectation for…
The samples were placed in a desiccator instead of being left to cool on the lab bench between each heating. This is because the beaker and contents would cause the mass of fluctuate when placed on the tared balance if not cooled in the desiccator. This is used to store the beakers and the anhydrate so that the anhydrate does not absorb moisture from the air.…
By calculating the difference in the mass of the hydrate copper (II) sulfate and the anhydride we were able to determine the mass of water in the hydrate. This information was then used to determine the empirical formula of the hydrate, defined as a compound formed by the addition of water to another molecule. In the first trial, the mass of water in the hydrate was determined to be 0.41 g, while in the second trial the mass of water was 0.52 g. Moles of water associated with a single mole of anhydride were then calculated for both trials, giving the values of 4.7 and 4.5 moles of water, respectively. This indicated that the empirical formula of the hydrate might be copper (II) sulfate pentahydrate – CuSO4·5H2O.…
The lab in which we conducted last Tuesday was an analysis of a hydrate and what happens to it when it is heated. A hydrate is a crystalline compound which water molecules are chemically bound to it. In the lab, we were to analyze the difference in grams of the hydrate and the anhydrate. An anhydrate is the crystalline compound without the water molecules bound to it. During our lab, we were to heat up the crucible, the crucible with hydrate, and the crucible with an anhydrous and write down each weight, then repeat. Once we completed that task then we were to find the number of moles of water lost, the number of moles of anhydrous copper sulfate, percent comp of water in the hydrated copper sulfate, the mole ratio of moles of water and moles of anhydrous copper sulfate. Once this is all done, we found our percent error and compared it to the exact value.…