MT1311
Chromosomal aberrations are abnormalities in the structure or number of chromosomes and are often responsible for genetic disorders. For more than a century, scientists have been fascinated by the study of human chromosomes. It was not until 1956, however, that it was determined that the actual diploid number of chromosomes in a human cell was forty-six (22 pairs of autosomes and two sex chromosomes make up the human genome). In 1959 two discoveries opened a new era of genetics. Jerome Lejeune, Marthe Gautier, and M. Raymond Turpin discovered the presence of an extra chromosome in Down syndrome patients. And C. E. Ford and his colleagues, P. A. Jacobs and J. A. Strong first observed sex chromosome anomalies in patients with sexual development disorders.
Advances in Chromosomal Analysis
Identification of individual chromosomes remained difficult until advances in staining techniques such as Q-banding revealed the structural organization of chromosomes. The patterns of bands were found to be specific for individual chromosomes and hence allowed scientists to distinguish the different chromosomes. Also, such banding patterns made it possible to recognize that structural abnormalities or aberrations were associated with specific genetic syndromes. Chromosome disorders, or abnormalities of even a minute segment (or band) are now known to be the basis for a large number of genetic diseases.
Chromosomal disorders and their relationship to health and disease are studied using the methods of cytogenetics. Cytogenetic analysis is now an integral diagnostic procedure in prenatal diagnosis. It is also utilized in the evaluation of patients with mental retardation, multiple birth defects, and abnormal sexual development, and in some cases of infertility or multiple miscarriages. Cytogenetic analysis is also useful in the study and treatment of cancer patients and individuals with hematologic disorders. The types of chromosomal abnormalities