Preview

Clay Loading and Dispersion Effects on the Rheological Properties of Unsaturated Polyester Nanocomposites

Powerful Essays
Open Document
Open Document
2122 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Clay Loading and Dispersion Effects on the Rheological Properties of Unsaturated Polyester Nanocomposites
Clay Loading and Dispersion Effects on the Rheological Properties of Unsaturated Polyester Nanocomposites
Tony Nguyen
(Mentor: Abbas A. Zaman, College of Engineering) ABSTRACT
The objective of this work is to characterize the influence of clay loading and dispersion effects on the rheological properties of unsaturated polyester composites. Toughened unsaturated polyester (UPE) composites were synthesized by the blending of delaminated clay with unsaturated polyester. Rheological behavior is shown to be strongly influenced by clay loading and the extent of clay dispersion in the polymer matrix. Transition from liquid-like behavior to solid-like behavior shifts to significantly higher solids loading at higher shear rates which may be due to the alignment of the particles in the direction of flow at high shear rates. SEM micrographs are used to display the extent of intercalation and dispersion of the clay within the polymer matrix.
INTRODUCTION AND BACKGROUND
1.1 Definition
Polymer/clay nanocomposites display a change in composition and structure over a nanometer length scale and have been shown to present considerable property enhancements relative to conventionally scaled composites. Layered silicates dispersed as a reinforcing phase in an engineering polymer matrix are one of the most important of such "hybrid organic-inorganic nanocomposites" [1]. Polymer-layered silicate nanocomposites containing low levels of exfoliated clays, such as montmorillonite and vermiculite have a structure consisting of platelets with at least one dimension in the nanometer range. One of the most important features of polymeric materials is the possibility of controlling their macroscopic physical properties by tailored manipulation of their structures at a nanoscopic scale. To influence the interactions that govern the mechanical properties of polymers, specific nanoscopic scale reinforcement is efficient and beneficial. For example, montmorillonite clay provides such



References: 1. LeBaron, P.C., Wang, Z., Pinnavaia, T.J.; Appl. Clay Sci. 15 (1999) 11. 2. Shelley, J.S., Mather, P.T., DeVries, K.L.; Polymer 42 (2001) 5849-5858. 3. Fornes, T.D., Yoon, P.J., Keskkula, H., Paul, D.R.; Polymer 42 (2001) 9929. 4. Usuki, A. Koiwai, A., Kojima, Kawasumi, M., Okada, A., Kurauchi, T., Kamigaito, O.; J. Appl. Polym. Sci. 55 (1995) 119. 5. Liu, L., Oi, Z., Zhu, X.; J. Appl. Polym. Sci. 71 (1999) 1133. 6. Lan, T., Pinnavaia, T.J.; Chem. Mater. 6 (1994) 2216. 7. Lincoln, D.M, Vaia, R.A., Sanders, J.H., Philips, S.D., Cutler, J.N., Cerbus, C.A.; Polym. Mater. Sci Eng. 82 (2000) 230. 8. Yano, K., Usuki, A., Okada, A., Kurauchi, T., Kamigaito, O.; J. Polym. Sci., Part A: Polym. Chem. 31 (1993) 2493 9. Gu, A., Chang, F.C.; J 10. Gilman, J.W.; Appl. Clay Sci. 15 (1999) 31. 11. Kojima, Y 12. Kojima, Y. Usuki, A., et. al.; J. Appl. Polym. Sci.. 49 (1993) 1259. 13. Gopakumar, T.G., Lee, J.A., Kontopoulou, M., Parent, J.S.; Polymer 43 (2002) 5483. 14. Hyun, Y.H., Sung, T.L., Hyoung, J.C., Myung, S.; J. Macromol. 34 (2001) 8084. 15. Giannelis, E.P.; Adv 16. Wang, H., Changchun, Z., Elkovitch, M., Lee, L.J., Koelling, K.W.; Polym. Eng. & Sci. 41 (2001) 2036. 17. Vaia, R.A., and Giannelis, E.P.; Macromol. 30 (1997) 8000. 18. Kurokawa, Y., Yasuda, H., et. al.; Mater. Sci. Lett. 16 (1997) 1670. 19. Krishnamoorti, R. and Giannelis, E.P.; Macromol. 30 (1996) 4097. 20. Manias, E., Hadziioannon, G., Brinke, T.; Langmuir 12 (1996) 4587. 21. Schmidt, G., Nakatani, A.I., Butler, P.D. et. al.; Macromol. 33 (2000) 7219. 22. Lim Y.T., Park O.O.; Rheal 23. Pinnavaia, T.J.; Science 220 (1983) 365.

You May Also Find These Documents Helpful