1. Clean, rinse, and fill a buret with NaOH solution just as you did in last week's experiment. Record the molarity of the NaOH and the initial NaOH volume reading from the buret (+0.02 mL).…
Step 1. Support a clean porcelain crucible and its cover on a clay triangle (see Figure 1). Heat them in the hottest portion of a burner flame until the bottom of the crucible glows dull red for five minutes. Expelling water from the hydrate.…
To begin the experiment, the unknown needs to be determined as an acid or a base by using litmus paper or a pH strip. For the rest of the experiment, if the substance is being handled, gloves and goggles must be worn. Use a clean and dry Erlenmeyer flask and weigh it. Then, some of the unknown will be measured and poured into the flask. Also way the flask and the unknown.…
Start off by weighing two paracetamol tablets using some accurate scales. Record the mass down (1.15g). This had to be as accurate and precise as we could get it so we had the correct weight to start the experiment. Without this then the results we found at the end would not be accurate. A problem that could be faced with this is that the scales may not have been fully set to zero. Also it takes time for it to fully reach its weight on the reading so you may move them too quick before the right weight has been set.…
There were several uncertainties which may have led to the results not being closer to the actual empirical formula for magnesium oxide. First, as noted in the Observations, the burner that was being used was not able to be adjusted which caused the magnesium ribbon to not burn quickly. The flame was not strong enough to reach the magnesium or turn the crucible red hot, so that the magnesium could have begun to burn. This may have caused a later reaction to not occur properly or fully. The mass of magnesium oxide may be impacted if some of the magnesium does not fully…
This was done on purpose to make sure that the final mass of the heated substance was accurate. Then, the crucible was heated over the bunsen burner for approximately 4 minutes using the clay triangles as support. Once the 4 minutes were over and the crucible cooled off,…
Place magnesium ribbon in a clean crucible (on a clay triangle above a Bunsen burner). Heat until the magnesium begins to burn.…
During my observation I noticed that when 10mg of magnesium metal was added to the beaker a shaded area appeared on the bottom of the beaker. When the bubbles stopped and the shaded area in the beaker disappeared it showed that the magnesium has been consumed.…
One source or error in this experiment can be caused by some water vapor from the air being absorbed back into the crystal as soon as the burner is turned off. The mass would be higher because of the added H2O. Therefore, when the crucible is weighed it would give a different…
Place magnesium ribbon in a clean crucible (on a clay triangle above a Bunsen burner). Heat until the magnesium begins to burn.…
In this experiment, you first find the mass of the crucible and cover. Next, you will find the mass of crucible, cover and Mg. After that, you will crumple up the Mg and put it into the crucible and put the cover on over the bunsen burner with heating it for four min. Then you will remove the lid slightly and let it heat for another…
With the cover off, heat the crucible. Increase the temperature gradually. When the magnesium ribbon glows red, or ignites, cover the crucible quickly and reduce the amount of heat applied. To prevent any loss of product, the crucible must be covered when you observe ignition. After…
18. Place magnesium ribbon in a clean crucible (on a clay triangle above a Bunsen…
Turn the Bunsen burner off, and allow the crucible to cool for a few minutes.…
Obtained a length of pre-cut magnesium and cleaned with emery paper. Then coiled the ribbon around a pencil to ensure it is not wrapped too tightly, then placed into the bottom of the crucible.…