A raster graphics image, or bitmap, is a dot matrix data structure representing a generally rectangular grid of pixels, or points of color, viewable via a monitor, paper, or other display medium. Raster images are stored in image files with varying formats.
A bitmap corresponds bit-for-bit with an image displayed on a screen, generally in the same format used for storage in the display's video memory, or maybe as a device-independent bitmap. A bitmap is technically characterized by the width and height of the image in pixels and by the number of bits per pixel (a color depth, which determines the number of colors it can represent).
Meanwhile, Vector graphics is the use of geometrical primitives such as points, lines, curves, and shapes or polygon(s), which are all based on mathematical expressions, to represent images in computer graphics. Vector graphics are based on vectors (also called paths, or strokes) which lead through locations called control points. Each of these points has a definite position on the x and y axes of the work plan. Each point, as well, is a variety of database, including the location of the point in the work space and the direction of the vector (which is what defines the direction of the track). Each track can be assigned a color, a shape, a thickness and also a fill.
This does not affect the size of the files in a substantial way because all information resides in the structure; it describes how to draw the vector.
Raster graphics are resolution dependent. They cannot scale up to an arbitrary resolution without loss of apparent quality. This property contrasts with the capabilities of vector graphics, which easily scale up to the quality of the device rendering them. Raster graphics deal more practically than vector graphics with photographs and photo-realistic images, while vector graphics often serve better for typesetting or for graphic design. Modern computer-monitors typically