Charged conductors that have reached electrostatic equilibrium share a variety of unusual characteristics. One characteristic of a conductor at electrostatic equilibrium is that the electric field anywhere beneath the surface of a charged conductor is zero. If an electric field did exist beneath the surface of a conductor (and inside of it), then the electric field would exert a force on all electrons that were present there. This net force would begin to accelerate and move these electrons. But objects at electrostatic equilibrium have no further motion of charge about the surface. So if this were to occur, then the original claim that the object was at electrostatic equilibrium would be a false claim. If the electrons within a conductor have assumed an equilibrium state, then the net force upon those electrons is zero. The electric field lines either begin or end upon a charge and in the case of a conductor, the charge exists solely upon its outer surface. The lines extend from this surface outward, not inward. This of course presumes that our conductor does not surround a region of space where there was another charge.
To illustrate this characteristic, let's consider the space between and inside of two concentric, conducting cylinders of different radii as shown in the diagram at the right. The outer cylinder is charged positively. The inner cylinder is charged negatively. The electric field about the inner cylinder is directed towards the negatively charged cylinder. Since this cylinder does not surround a region of space where there is another charge, it can be concluded that the excess charge resides solely upon the outer surface of this inner cylinder. The electric field inside the inner cylinder would be zero. When drawing electric field lines, the lines would be drawn from the inner surface of the outer cylinder to the outer surface of the inner cylinder. For the excess charge on the outer cylinder,