Preview

Convex Set

Powerful Essays
Open Document
Open Document
109682 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Convex Set
Convex Optimization Solutions Manual

Stephen Boyd

Lieven Vandenberghe

January 4, 2006

Chapter 2

Convex sets

Exercises

Exercises
Definition of convexity
2.1 Let C ⊆ Rn be a convex set, with x1 , . . . , xk ∈ C, and let θ1 , . . . , θk ∈ R satisfy θi ≥ 0, θ1 + · · · + θk = 1. Show that θ1 x1 + · · · + θk xk ∈ C. (The definition of convexity is that this holds for k = 2; you must show it for arbitrary k.) Hint. Use induction on k. Solution. This is readily shown by induction from the definition of convex set. We illustrate the idea for k = 3, leaving the general case to the reader. Suppose that x 1 , x2 , x3 ∈ C, and θ1 + θ2 + θ3 = 1 with θ1 , θ2 , θ3 ≥ 0. We will show that y = θ1 x1 + θ2 x2 + θ3 x3 ∈ C. At least one of the θi is not equal to one; without loss of generality we can assume that θ1 = 1. Then we can write where µ2 = θ2 /(1 − θ1 ) and µ2 = θ3 /(1 − θ1 ). Note that µ2 , µ3 ≥ 0 and µ1 + µ 2 = y = θ1 x1 + (1 − θ1 )(µ2 x2 + µ3 x3 )

1 − θ1 θ2 + θ 3 = = 1. 1 − θ1 1 − θ1 Since C is convex and x2 , x3 ∈ C, we conclude that µ2 x2 + µ3 x3 ∈ C. Since this point and x1 are in C, y ∈ C. 2.2 Show that a set is convex if and only if its intersection with any line is convex. Show that a set is affine if and only if its intersection with any line is affine. Solution. We prove the first part. The intersection of two convex sets is convex. Therefore if S is a convex set, the intersection of S with a line is convex. Conversely, suppose the intersection of S with any line is convex. Take any two distinct points x1 and x2 ∈ S. The intersection of S with the line through x1 and x2 is convex. Therefore convex combinations of x1 and x2 belong to the intersection, hence also to S. 2.3 Midpoint convexity. A set C is midpoint convex if whenever two points a, b are in C, the average or midpoint (a + b)/2 is in C. Obviously a convex set is midpoint convex. It can be proved that under mild conditions midpoint convexity implies convexity. As a simple case, prove that

You May Also Find These Documents Helpful