INTRODUCTION
Everyday the media brings us horrible news on road accidents. Once a report said that the damaged property and other costs may equal 3 % of the world’s gross domestic product. The concept of assisting driver in longitudinal vehicle control to avoid collisions has been a major focal point of research at many automobile companies and research organizations. The idea of driver assistance was started with the ‘cruise control devices’ first appeared in 1970’s in USA. When switched on, this device takes up the task of the task of accelerating or braking to maintain a constant speed. But it could not consider the other vehicles on the road.
An ‘Adaptive Cruise Control’ (ACC) system developed as the next generation assisted the driver to keep a safe distance from the vehicle in front. This system is now available only in some luxury cars like Mercedes S-class, Jaguar and Volvo trucks the U.S. Department of transportation and Japan’s ACAHSR have started developing ‘Intelligent Vehicles’ that can communicate with each other with the help of a system called ‘Co operative Adaptive Cruise Control’ .this paper addresses the concept of Adaptive Cruise Control and its improved versions.
ADAPTIVE CRUISE CONTROL (ACC)
PRINCIPLE OF ACC
ACC works by detecting the distance and speed of the vehicles ahead by using either a Lidar system or a Radar system. The time taken by the transmission and reception is the key of the distance measurement while the shift in frequency of the reflected beam by Doppler Effect is measured to know the speed. According to this, the brake and throttle controls are done to keep the vehicle the vehicle in a safe position with respect to the other. These systems are characterized by a moderately low level of brake and throttle authority. These are predominantly designed for highway applications with rather homogenous traffic behavior. The second generation of ACC is the Stop and