Current status and expected future trends in dust explosion research
R.K. Eckhoff*
Department of Physics and Technology, University of Bergen, Allegaten 55, N-5007 Bergen, Norway ¨ Øresund Safety Advisers AB, Box 82, SE-20120 Malino, Sweden
Abstract In spite of extensive research and development for more than 100 years to prevent and mitigate dust explosions in the process industries, this hazard continues to threaten industries that manufacture, use and/or handle powders and dusts of combustible materials. Lack of methods for predicting real dust cloud structures and flame propagation processes has been a major obstacle to prediction of course and consequences of dust explosions in practice. However, work at developing comprehensive numerical simulation models for solving these problems is now on its way. This requires detailed experimental and theoretical studies of the physics and chemistry of dust cloud generation and combustion. The present paper discusses how this kind of work will promote the development of means for prevention and mitigation of dust explosions in practice. However, progress in other areas will also be discussed, e.g. ignition prevention. The importance of using inherently safe process design, building on knowledge in powder science and technology, and of systematic education/training of personnel, is also emphasized. q 2005 Elsevier Ltd. All rights reserved.
Keywords: Dust explosions; Dust explosion prevention; Dust explosion mitigation; Dust explosion research
1. Introduction The dust explosion hazard continues to represent a constant threat to process industries that manufacture, use and/or handle powders and dusts of combustible materials. However, substantial advances have been made through extensive research and development world-wide for more than 100 years. Table 1 gives an overview of the most important methods currently