Yourdon
Recently reviewed
In the late 1970s data-flow diagrams (DFDs) were introduced and popularized for structured analysis and design (Gane and Sarson 1979). DFDs show the flow of data from external entities into the system, showed how the data moved from one process to another, as well as its logical storage. Figure 1 presents an example of a DFD using the Gane and Sarson notation. There are only four symbols: Squares representing external entities, which are sources or destinations of data. Rounded rectangles representing processes, which take data as input, do something to it, and output it. Arrows representing the data flows, which can either be electronic data or physical items. Open-ended rectangles representing data stores, including electronic stores such as databases or XML files and physical stores such as or filing cabinets or stacks of paper.
A data flow diagram (DFD) is a graphical representation of the "flow" of data through an information system, modelling its process aspects. Often they are a preliminary step used to create an overview of the system which can later be elaborated.[2] DFDs can also be used for the visualization of data processing (structured design).
A DFD shows what kinds of data will be input to and output from the system, where the data will come from and go to, and where the data will be stored. It does not show information about the timing of processes, or information about whether processes will operate in sequence or in parallel (which is shown on a flowchart).
It is common practice to draw the context-level data flow diagram first, which shows the interaction between the system and external agents which act as data sources and data sinks. On the context diagram the system's interactions with the outside world are modelled purely in terms of data flows across the system boundary. The context diagram shows the entire system as a single process, and gives no clues as to its internal