Object Mass / g
± 0.05 g * Length / cm
± 0.003 cm ** Width / cm
± 0.003 cm ** Height / cm
± 0.003 cm ** T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5
A 44.9 5.975 5.980 5.980 5.980 5.975 1.500 1.500 1.500 1.500 1.500 0.600 0.600 0.605 0.600 0.600
B 16.5 4.400 4.395 4.400 4.395 4.395 1.500 1.500 1.495 1.500 1.495 0.300 0.305 0.305 0.300 0.300
C 22.5 3.000 2.995 3.000 3.000 3.000 1.500 1.505 1.495 1.500 1.500 0.600 0.595 0.600 0.595 0.595
D 22.6 6.005 6.000 6.010 6.005 6.000 1.500 1.500 1.495 1.500 1.495 0.295 0.300 0.300 0.305 0.300
E 11.4 3.040 3.045 3.040 3.075 3.070 1.500 1.495 1.500 1.500 1.495 0.300 0.300 0.305 0.300 0.300
F 5.80 1.550 1.550 1.540 1.550 1.550 1.495 1.500 1.500 1.495 1.500 0.300 0.300 0.300 0.300 0.300
Table 1: Raw data table
Half the smallest division: 0.1 ÷ 2 = 0.05 g
** Half the smallest division: 0.005 ÷ 2 = 0.0025 ≃ 0.003 cm Inaccurate set of data due to random error. (See Evaluation)
Table 2: Data processing 1
Object Mass / g
± 0.05 g Average L / cm Abs. Unc. L / cm Average W / cm Abs. Unc. W / cm Average H / cm Abs. Unc. H / cm
A 44.9 5.98 0.006 1.50 0.003 0.60 0.007
B 16.5 4.40 0.006 1.50 0.006 0.30 0.006
C 22.5 3.00 0.007 1.50 0.008 0.60 0.006
D 22.6 6.00 0.009 1.50 0.006 0.30 0.008
E 11.4 3.06 0.03* 1.50 0.006 0.30 0.007
F 5.80 1.55 0.02* 1.50 0.006 0.30 0.003
Since the uncertainties can only be written with 1 s.f, the number of decimal places cannot be the same as the others.
Calculating the average of length, width, and height and their uncertainties:
In order to find the average all the numbers should be added up, and then divided by how many numbers there are.
Average: (∑X)/N
Average length of object A:
(5.975+5.980+5.980+5.980+5.975)/5 = 5.978 ≃ 5.98 cm
Average width of object A:
(1.500+1.500+1.500+1.500+1.500)/5 = 1.500≃ 1.50 cm
Average height of object A:
(0.600+0.600+0.605+0.600+0.600)/5 = 0.601 ≃ 0.60 cm
After finding the average, the