Preview

Describe The Relationship Between Glycolysis And Krebs Cycle

Satisfactory Essays
Open Document
Open Document
503 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Describe The Relationship Between Glycolysis And Krebs Cycle
Skeletal muscle fibres can change from high activity, in which a high amount of ATP is used to a low level of activity, with only a small amount being used. The ATP in the muscle fibres is enough to allow muscle contractions for a few seconds. When muscle contraction continues more ATP is needed.

Aerobic glycolysis

Oxidation of glucose requires a different enzyme and a coenzyme for each step. Coenzyme A is used at this stage in cellular respiration, which is derived from from a B vitamin called pantothenic acid. During the transitional between glycolysis and the Krebs cycle, pyruvic acid begins to prepare for entry into the cycle. The enzyme pyruvate dehydrogenase, changes pyruvic acid to a 2-carbon fragment called an acetyl group by removing a carbon dioxide molecule. Decarboxylation is the substance that causes the loss of a carbon dioxide molecule. In cellular respiration this is the first action that releases CO2. Pyruvic acid is also oxidized during this reaction.

Krebs cycle
…show more content…
The Krebs cycle, and the electron transport chain reactions, are the process that produces ATP, carbon dioxide, water, and heat.

When the acetyl group attaches to coenzyme A and the pyruvic acid has undergone decarboxylation, the acetyl-CoA enzyme is prepared to enter the Krebs cycle.

The molecule formed when acetyl group joins the cycle is known as the citric acid cycle, these reactions occur in the matrix of mitochondria. Decarboxylation reactions release CO2 and oxidation-reduction reactions.
Chemical energy in transferred in the form of electrons by oxidation-reduction to two coenzymes NAD+ and FAD. The coenzymes are reduced when pyruvic acids are oxidized.

The cycle undergoes a complete turn when an acetyl CoA molecule enters the Krebs cycle, starting with the production of citric acid and ending with oxaloacetic acid being

You May Also Find These Documents Helpful

  • Satisfactory Essays

    Biology Summary Guide 7.2

    • 497 Words
    • 2 Pages

    1. The Krebs Cycle is a biochemical pathway that breaks down acetyl CoA, producing CO2, hydrogen atoms and ATP.…

    • 497 Words
    • 2 Pages
    Satisfactory Essays
  • Good Essays

    Krebs Cycle Lab Report

    • 297 Words
    • 2 Pages

    he Krebs Cycle also expressed as: CH3C(=O)C(=O)O− (pyruvate) + HSCoA + NAD+ → CH3C(=O)SCoA (acetyl-CoA) + NADH + CO2 is the main pathway in all aerobic organisms. Basically it’s the way that cells produce energy for itself, but the only issue is it requires the presence of oxygen. In total eight reactions that take place in the mitochondria, and these reactions result in two carbon molecules and oxidizes it into carbon dioxide. Step 1 Citrate synthase bridges to Oxaloacetate substrates which can then bind to Acetyl–CoA’s acetyl group, which drops off the A Co-enzyme. This in turn created citrates for usage later in the Krebs cycle. This six-carbon molecule will be degraded, and biotransformed back into Oxaloacetate.Step 2The citrate isn't…

    • 297 Words
    • 2 Pages
    Good Essays
  • Better Essays

    Cell Energy Worksheet

    • 1063 Words
    • 5 Pages

    The Citric Acid Cycle starts after the glycolysis cycle produces the acetyl CoA compound. The Coenzyme A is removed and the remaining carbon skeleton is attached to another 4-carbon molecule. The new 6-carbon chain releases carbon dioxide. Two ATP’s are produced during this process for each molecule of glucose. The end result of the citric acid cycle is 4 CO molecules, 6 NADH molecules, 2 ATP molecules and 2 FADH2 molecules. The process is part of the conversion of carbs, fats, and proteins into carbon dioxide and water; which is usable energy.…

    • 1063 Words
    • 5 Pages
    Better Essays
  • Good Essays

    During the Krebs cycle: the products of glycolysis are further broken down, generating additional ATP and the high-energy electron carrier NADH…

    • 500 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Sci 230 Essay Example

    • 897 Words
    • 4 Pages

    Each of the pyruvic acid molecules will be processed in two separate citric acid cycles. Here the three carbon pyruvic acid molecule is processed to produce ATP and Carbon Dioxide molecules. This Cycle uses ATP to specifically break down the pyruvate into Acetyl Co-A. Once this goes through the cycle, limited ATP as well as more NADH are produced. This happens in the mitochondria when sufficient oxygen is present to form the Carbon Dioxide.…

    • 897 Words
    • 4 Pages
    Good Essays
  • Good Essays

    The Citric Acid Cycle is a series of enzyme-catalysed reactions that take place in the mitochondrial matrix of all aerobic organisms. It involves the oxidation of the acetyl group of acetyl CoA to two molecules of carbon dioxide. Each cycle produces one molecule of ATP by substrate-level phosphorylation, and reduces three molecules of NAD and one molecule of FAD for use in Oxidative Phosphorylation. The cycle is preceded by Glycolysis, which also occurs in anaerobic respiration, and the pyruvate dehydrogenase complex, which occur in the cytoplasm and the mitochondrial matrix respectively. In aerobic respiration, glycolysis breaks down one molecule of glucose and two molecules of pyruvate, and gives a net product…

    • 1383 Words
    • 6 Pages
    Good Essays
  • Good Essays

    3) Krebs cycle- the introduction of acetyl co-enzyme A into a cycle of oxidation-reduction reactions that yield some ATP and a large number of electrons.…

    • 1000 Words
    • 4 Pages
    Good Essays
  • Better Essays

    Biochemistry-Metabolism

    • 1252 Words
    • 6 Pages

    the citric acid or Krebs cycle and 3) electron transport system. The glycolytic pathway or…

    • 1252 Words
    • 6 Pages
    Better Essays
  • Good Essays

    Biology Worksheet

    • 924 Words
    • 4 Pages

    For further derivation of energy, aerobic cells must convert pyruvate into acetyl coenzyme A by stripping off a C02 molecule. This process is known as ___________.…

    • 924 Words
    • 4 Pages
    Good Essays
  • Good Essays

    Respirationlabbackground

    • 733 Words
    • 2 Pages

    Aerobic cellular respiration is a pivotal process in which organisms carry out in order to sustain life. It is characterized by the release of energy from organic compounds by means of chemical oxidation within the mitochondria of the cell. The reactants are glucose and oxygen, and after a series of complex steps, the products of carbon dioxide, water, and ATP + heat are released. Thus, cellular respiration is an exergonic process, since heat energy is released in order to do cellular work. The overall process can be encapsulated by the following equation: C6H12O6 + CO2 6CO2+ 6H2O+ 586 kilocalories of energy/mole of glucose oxidized. This reaction seems very straightforward, however there are numerous enzyme-mediated reactions that occur within it that are not so perceptible from the simplified equation. Cellular respiration consists of three major stages: The first is Glycolysis; (occurring in the cytosol) in which chemical energy is harvested by oxidizing glucose into two 3 carbon molecules of pyruvate, and thus producing a net of 2 ATP molecules through substrate-level phosphorylation, as well as a net of 2 NADH molecules. Subsequently, the Krebs Cycle commences after 2 pyruvate molecules are converted to 2 Acetyl CoA molecules in the intermembrane space of the mitochondria. During the Krebs Cycle (occurring in the mitochondrial matrix)4 CO2 molecules are released, 1 ATP molecule is formed (for each turn of the cycle), and the reduced forms of 6 NADH and 2 FADH carry the electrons to the next step: the Electron Transport Chain. This occurs in the inner membrane of the mitochondria, and consists of many electron carriers that pass electrons (donated by NADH and FADH2) along through a series of redox reactions. At the end of the chain, oxygen acts as a final electron acceptor and it reduced them to form water. A proton motive force, or H+ gradient,…

    • 733 Words
    • 2 Pages
    Good Essays
  • Powerful Essays

    Unit two Biology

    • 7492 Words
    • 30 Pages

    CoA + pyruvate (3C) oxidised NAD reduced NAD acetyl CoA (2C) + CO2 Figure 2.6 The link reaction. The Krebs cycle…

    • 7492 Words
    • 30 Pages
    Powerful Essays
  • Good Essays

    Cell Work Sheet

    • 850 Words
    • 4 Pages

    This cycle also called the “Krebs cycle”, completes the breakdown of glucose all the way to CO2, one of the waste products off cellular respiration. The enzymes for the citric acid cycle are dissolved in the fluid within mitochondria. Glycolysis and the citric acid cycle generate a small amount of ATP directly. They generate much more ATP indirectly, via redox reactions that transfer electrons from fuel molecules to NAD+, forming NADH.…

    • 850 Words
    • 4 Pages
    Good Essays
  • Good Essays

    Explain what occurs during the Krebs (citric acid) cycle and electron transport by describing the following:…

    • 952 Words
    • 4 Pages
    Good Essays
  • Satisfactory Essays

    Glycolysis is where glucose is split into two molecules of 3-carbon sugars. This produces 2ATP, 2 pyruvic acid, and 2 high energy. In The Citric Acid Cycle, Acetyl CoA is created. NAD and FAD are reduced carrying the high energy electrons to the next stage. In the Electron Transport, high energy electrons are passed to oxygen where ATP is then produced.…

    • 286 Words
    • 2 Pages
    Satisfactory Essays
  • Powerful Essays

    Cellular respiration is an ATP-producing catabolic process in which the electron receiver is an inorganic molecule. It is the release of energy from organic compounds by chemical oxidation in the mitochondria within each cell. Carbohydrates, proteins, and fats can all be metabolized, but cellular respiration usually involves glucose: C6H12O6 + 6O2 → 6CO2 + 6H2O + 686 Kcal of energy/mole of glucose oxidized. Cellular respiration involves glycolysis, the Krebs cycle, and the electron transport chain. Glycolysis is a catabolic pathway that occurs in the cytosol and partially oxidizes glucose into two pyruvate (3-C). The Krebs cycle occurs in the mitochondria and breaks down a pyruvate (Acetyl-CoA) into carbon dioxide. These two cycles both produce a small amount of ATP by substrate-level phosphorylation and NADH by transferring electrons from substrate to NAD+. The Krebs cycle also produces FADH2 by transferring electrons to FAD. The electron transport chain is located at the inner membrane of the mitochondria and accepts energized electrons from enzymes that are collected during glycolysis and the Krebs cycle, and…

    • 1687 Words
    • 7 Pages
    Powerful Essays