Abstract
Of the newly-built bridges, cable-stayed bridges are today very common worldwide for spans ranging between 200 and 900 meters. A cable stayed bridge has one or more towers (Pylons) from which the cables support the deck. This paper provides modelling, analysis and design of a prestressed harp type single pylon cable stayed bridge using MIDAS Civil.
Keywords: cable stayed, box girder, prestressing, MIDAS Civil
Introduction
Of the newly-built bridges, cable-stayed bridges are today very common worldwide for spans ranging between 200 and 900 meters. A cable stayed bridge has one or more towers (Pylons) from which the cables support the deck.
There are two major classes of cable-stayed bridges: harp and fan.In the harp design, the cables are nearly parallel so that the height of their attachment to the tower is similar to the distance from the tower to their mounting on the deck.In the fan design, the cables all connect to or pass over the top of the towers.
The cable-stayed bridge is optimal for spans longer than cantilever bridges, and shorter than suspension bridges. This is the range where cantilever bridges would rapidly grow heavier if the span was lengthened, and suspension bridge cabling would not be more economical if the span was shortened
Cable-stayed bridges may appear to be similar to suspension bridges, but in fact they are quite different in principle and in their construction. In suspension bridges, large main cables (normally 2) hang between the towers (normally 2), and are anchored at each end to the ground whereas in the cable-stayed bridge, the towers are the primary load-bearing structures which transmitt the bridge loads to the ground. A cantilever approach is often used to support the bridge deck near the towers, but lengths further from them are supported by cables running directly to the towers.
General presentation of the structure
The bridge is a single pylon
References: AASHTO LRFD Bridge Design Specifications (Third Edition, 2005 Interim Revisions); AASHTO - Guide Specifications for Seismic Isolation Design ( 2nd edition – 2000); AASHTO - Guide Specifications for Design & Construction of Segmental Concrete Bridges (1999); IRC:6-2000 Standard Specifications & Code of Practice for Road Bridges, Section II, Loads & stresses (4th edition – 2000); for definition of the live loads and earthquake loads only; IS:875 (part 3)-1987 Code of practice for design loads (other than earthquake) for buildings and structures; for wind loads only; Essentials of Bridge engineering by D.Johnson Victor Bridge Engineering Handbook Edited by Wai-Fah Chen ,Lian Duan, CRC Press