Principle of Differential Pulse Code Modulation (DPCM) Characteristics of DPCM quantization errors Predictive coding gain Adaptive intra-interframe DPCM Conditional Replenishment
Bernd Girod: EE398B: Image Communication II
DPCM no. 1
Principle of DPCM input s + e quantizer + s predictor + s' e' entropy coder channel
coder
output
s' + predictor s
+ e'
entropy decoder
channel
decoder
Prediction error
Reconstruction
Reconstruction error = quantization error
e= s−s ˆ
s ′ = e′ + s ˆ
s′ − s = e′ − e = q
DPCM no. 2
Bernd Girod: EE398B: Image Communication II
Quantization error feedback in the DPCM coder
Assuming a linear predictor, the DPCM coder is equivalent to the following structure: ~ s + e e quantizer e' predictor s (s) s (q) predictor q (e) +
Transfer function of the prefilter:
˜ E (Ω) = [1 − P(Ω)]S(Ω)
Ω - abbreviation for frequency vector, ω e.g., ( x , ω y )
transfer function of the predictor
Transfer function of quantization error feedback:
˜ E ′(Ω) = E(Ω) + [1 − P(Ω)]Q(Ω)
Bernd Girod: EE398B: Image Communication II DPCM no. 3
Power spectrum of the DPCM quantization error
Power spectral density of the quantization error q measured for intraframe DPCM with a 16 level quantizer
π
−π
0
0
ωx
ωy
π −π
Bernd Girod: EE398B: Image Communication II
DPCM no. 4
Signal distortions due to intraframe DPCM coding
Granular noise: random noise in flat areas of the picture Edge busyness: jittery appearance of edges (for video) Slope overload: blur of high-contrast edges, Moire patterns in periodic structures.
Bernd Girod: EE398B: Image Communication II
DPCM no. 5
Example of intraframe DPCM coding
1 bit/pixel prediction error coding slope overload
2 bit/pixel edge busyness granular noise
3 bit/pixel
Linear predictor:
0 1/2
1/4 1/4
4 bit/pixel
original
Lloyd-Max quantizers Fixed-length coding
DPCM no. 6
Bernd Girod: