Preview

Drosophila Melanogaster Lab Report

Good Essays
Open Document
Open Document
790 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Drosophila Melanogaster Lab Report
Abstract
Drosophila Melanogaster is one of the best organisms to study when researching genetics; in particular sex linked genes on the X chromosome. The principle reason for this study was to determine what genes were transferred to the males from the females, as the males only inherit one X chromosome.

Two experiments were conducted in which female and male flies were crossed. The first experiment was a cross between 5-trait females and wildtype males; the second experiment was a cross between wildtype females and 5-trait males. The initial results of these experiments showed that the males of the first experimental cross all expressed the phenotypes for the recessive genes and the females all expressed the wildtype traits. In the second experimental cross both the male and female flies expressed the wildtype traits and there were
…show more content…
It also has many characteristics which make it an ideal organism for the study of human genetic diseases and conditions. Because Drosophila shares 75% of the genes that cause disease in humans, it is a good organism to study as it helps scientists get a better understanding on human diseases. “It is not only the flies themselves that the scientists are interested in, but also understanding the basic biology that all organisms have in common.” (Unc.edu, 2011)

It is a good model organism because it has a short life cycle, a low number of chromosomes; unlike humans, who have 23 pairs of chromosomes, Drosophila has only four chromosomes; and is easy to culture as well as keep maintained. The life cycle of Drosophila lasts approximately 12 days at room temperature. Because the flies themselves are quite small, many can be produced at once which is good for comparisons. Approximately 60% of genes associated with human cancers and other genetic diseases are found in the Drosophila genome. (Modencode.sciencemag.org,

You May Also Find These Documents Helpful

  • Good Essays

    In this experiment, Drosophila melanogaster, Drosophila virilis, as well as a marker strain (mutant strain of D. melanogaster) were used to examine the genetic variation. Electrophoresis followed by the staining of the proteins will cause the enzymes, aldehyde oxidase, alcohol dehydrogenase, and malate dehydrogenase, to become visible, appearing as a set of different banding patterns. The banding patterns will dependent on the molecular form of the enzyme, indicating the genetic variation that can exist between strains (Biology Department, 2014).…

    • 1385 Words
    • 4 Pages
    Good Essays
  • Good Essays

    In addition to wild-type flies, 29 different mutations of the common fruit fly, Drosophila melanogaster, are included in FlyLab. The 29 mutations are actual known mutations in Drosophila. These mutations create phenotypic changes in bristle shape, body color, antennae shape, eye color, eye shape, wing size, wing shape, wing vein structure, and wing angle. For the purposes of the simulation, genetic inheritance in FlyLab follows Mendelian principles of complete dominance. Examples of incomplete dominance are not demonstrated with this simulation. A table of the mutant phenotypes available in FlyLab can be viewed by clicking on the Genetic Abbreviations tab which appears at the top of the FlyLab homepage. When you select a particular phenotype, you are not provided with any information about the dominance or recessiveness of each mutation. FlyLab will select a fly that is homozygous for the particular mutation that you choose, unless a mutation is lethal in the homozygous condition in which case the fly chosen will be heterozygous. Two of your challenges will be to determine the zygosity of each fly in your cross and to determine the effects of each allele by analyzing the offspring from your…

    • 862 Words
    • 4 Pages
    Good Essays
  • Satisfactory Essays

    1. In fruit flies, long wings are dominant to short wings. Complete a cross between a short winged male and a heterozygous female.…

    • 337 Words
    • 2 Pages
    Satisfactory Essays
  • Satisfactory Essays

    It is important to keep the generations separate so that you know you are crossing only F1 flies.…

    • 420 Words
    • 3 Pages
    Satisfactory Essays
  • Good Essays

    In the reciprocal cross, the behavioural phenotypes were isolated from one another while the wing veins were kept constant (in this case both wild type). When the wild type mellow female Drosophila and wild type hyper male Drosophila were crossed, all female offspring obtained a similar phenotype to that of the male parental while all the male offspring had phenotypical combinations similar to that of the female parent. This set of results shows that the mellow behavioral phenotype is a recessive x-linked gene carried by the female because the resulting male offspring showed the same characteristics to that of the female parent (received X – chromosome from female parent). On an additional note, there was a higher frequency of females in comparison to men; 121 and 105 respectively. In addition, the behavioral gene is sex -linked also because of the different resulting phenotypical ratio in comparison to the cross carried out in vial one.…

    • 771 Words
    • 4 Pages
    Good Essays
  • Better Essays

    Fruit Fly Lab Report

    • 1270 Words
    • 6 Pages

    The fruit fly or Drosophila melanogaster is ideal for classroom experiments. They are inexpensive, easy to nap, breed, as well as observe. It was very important to be able to tell the male and female flies apart from one another. The males are known to be usually smaller in size than the female flies and have bristles on their forelegs while the females lack this appearance. Also the males have a black or dark round end whereas the females have striped pointy ends. The Drosophila flies are small have dark red eyes and have a yellow-brown body. These flies are able to mutate within approximately ten to fourteen days at twenty-five degrees Celsius. The Drosophila has a…

    • 1270 Words
    • 6 Pages
    Better Essays
  • Good Essays

    Fruit Fly Lab Report

    • 1286 Words
    • 6 Pages

    The goal of the Drosophila melanogaster lab was to breed homozygous wild-type Drosophila melanogaster with homozygous mutant Drosophila…

    • 1286 Words
    • 6 Pages
    Good Essays
  • Better Essays

    Advantages of fruit flies: Prolific breeders, generation time of 2 weeks, 3 pairs of autosomes and a pair of sex chromosomes (XX in females, XY in males)…

    • 1748 Words
    • 7 Pages
    Better Essays
  • Good Essays

    Fruit Fly Lab Report

    • 602 Words
    • 3 Pages

    In this lab a study of fruit fly genetics was done these creature are readily used for genetic studies .they are easy to maintain. And the females lay a lot off eggs which develop in about two weeks. Fruit fly’s have for distinct stages, the egg, larva, pupa and adult. the egg and larva stages last for eight days, the pupal stage last for six days and then the adult stage which last for many weeks this period of growth is called instars. In this lab a dihybrid cross was performed to get data results and to draw a conclusion to the hypothesis.…

    • 602 Words
    • 3 Pages
    Good Essays
  • Satisfactory Essays

    chapter 10 bio. outline

    • 611 Words
    • 3 Pages

    Mendel also performed experiments looking at inheritance patterns of two traits together. From this he formulated the law of independent assortment. A test cross can also be performed to discover if individuals expressing the dominant allele are homozygous or heterozygous. Geneticists today often use Drosophila melanogaster as a test subject. The wild type fruit fly is used to discover inheritance patterns in mutant flies.…

    • 611 Words
    • 3 Pages
    Satisfactory Essays
  • Good Essays

    Apterous Fly Hypothesis

    • 1002 Words
    • 5 Pages

    Apterous flies have no wings, and are a recessive gene, while wild flies have wings and are a dominant gene, (TT,Tt). A punnett square can be used to cross a recessive (apterous fly, tt) and a dominant gene (wild fly, TT, Tt).…

    • 1002 Words
    • 5 Pages
    Good Essays
  • Good Essays

    They thought Mendel’s hereditary determinants were on a locus. They found out that the physical separation of alleles during anaphase I of meiosis accounts for Mendel’s principle of segregation. If the alleles for different genes are located on different chromosomes, they assort independently from one another in meiosis I. This confirmed the principle of independent assortment. Later on, the two scientists came up with the chromosome theory of inheritance, which states that independent assortment happens in metaphase and anaphase of meiosis I. To test the theory of inheritance, scientist Thomas Hunt Morgan used the fruit fly. At one point, Morgan noticed that a male fruit fly had white eyes rather than the wild type red eyes. He concluded that the white eyes resulted from a mutation. He mated a red-eyed female with a mutant white-eyed male and the results showed that all of the F_1 females had red eyes, but the F_1 males had white eyes. This was very peculiar because Mendel already proved that traits are not sex based. Morgan realized that the X chromosome in males and females explained his results. He determined that eye color is carried on the X chromosome and not on the Y chromosome. This is described as sex-linked inheritance. According to the X-linkage hypothesis, a female has two copies of the eye color gene because they have the two X chromosomes, whereas the male fruit flies have the one X chromosome that codes for eye color. The reciprocal cross of pea plants happened on non-sex chromosomes called autosomes. Genes on non-sex chromosomes show autosomal inheritance. Biologists now know that Boveri’s and Sutton's chromosome theory of inheritance was…

    • 600 Words
    • 3 Pages
    Good Essays
  • Good Essays

    The X/Y sex chromosomes and the 2,3,4, autosomes. It is important to know the differences between the two adult sexes in order to record and collect the data accurately. The major sexual differences in Drosophila are apparent in the abdominal segment of the flies. In males, the last abdominal segment of the male is much larger and rounded than that in the female. Another indicator is the presence of sex combs present in males. Male flies has a small, densely packed bristles call sex comb on the outer joints of both forelegs. Females lack sex combs. Therefore, if one sees sex combs on a fly, it is certain that the fly is a male. Female fruit flies remain virgins for approximately six hours after hatching but will mate after the six hour window. It is important for the female flies to be virgin, so one knows which fly genotypes are…

    • 1224 Words
    • 5 Pages
    Good Essays
  • Better Essays

    Fruit Fly Lab Report

    • 1348 Words
    • 6 Pages

    The purpose of this experiment was to determine the F1 genotype of fruit fly traits using the phenotypic ratio of the F2 generation and to express these results of the unknown cross through a Chi-square model and Mendelian genetics. After the experiment, it was found that the parents held a heterozygous genotype through using the Chi-square model, and that the observed and expected values fall within the Chi-squared value which also falls into the p-value. The Chi-squared value was 5.64, the degrees of freedom was 3 and the p-value was between .05 and .2, which supports the failing to reject the null hypothesis. The results also yielded the expected 9:3:3:1 ratio showing how different alleles combine and which ones are most prevalent. Using…

    • 1348 Words
    • 6 Pages
    Better Essays
  • Good Essays

    genetics notes

    • 398 Words
    • 2 Pages

    Study of how the inheritance of traits encoded by genes on sex chromosomes (sex-linked traits)…

    • 398 Words
    • 2 Pages
    Good Essays

Related Topics