1. Each of the following resistor combinations is connected as shown in figure 4.29. For each combination, calculate the total circuit resistance. R1 R2 R3 R4
a.1kΩ 220Ω 330Ω 1.1kΩ = 1kΩ+220Ω+330Ω+1.2kΩ=2650 x = 2.65kΩ
b. 10Ω 18Ω 47Ω 200Ω= 10Ω+18Ω+47Ω+200Ω= 275Ω
c. 150Ω 220Ω 820Ω 51Ω= 150Ω+220Ω+820Ω+51Ω=1241 x = 1.241kΩ
d. 10kΩ 91kΩ 5.1kΩ 300Ω= 10kΩ+91kΩ+5.1kΩ+300Ω=106,400 x = 106.4kΩ
3.The following resistor combinations are for a circuit like one shown in Figure 4.30. In each case, determine the unknown resistor value. R1 R2 R3 RT
a. 1.1kΩ 330Ω 470Ω 1.9kΩ
b. 27kΩ 47kΩ 91kΩ 165kΩ
c. 33kΩ 5.1kΩ 6.2kΩ 44.3kΩ
d. 27Ω 39Ω 82Ω 148 Ω
A) = 1.9kΩ - (1.1kΩ+330Ω) = 470Ω
B) 165kΩ- (47kΩ+91kΩ) = 27kΩ
C) 44.3kΩ - (33kΩ+6.2kΩ) = 5.1kΩ
D) = 27Ω+39Ω+82Ω = 148Ω
8. Calculate the total current for the circuit shown in Figure 4.32b. 1.5kΩ + 11kΩ=12,500Ω. I=V/= 5V/12,500Ω= 0.0004 x = 400µA
16. Calculate the value of the source voltage in Figure 4.34b. 22kΩ + 10kΩ = 32,000Ω. I= 500µA. V= I = 500µA x 32kΩ = 16V
23. Write the Kirchhoff’s loop equation for the circuit shown in Figure 4.36a and verify that the voltages add up to 0V. = 7V+2V+6V= 15V. 15V+ -7V + -2V + -6V= 0V
26. Calculate the value of the current in Figure 4.37b. 12V/150Ω= 0.08 x = 80mA
Correction:
Vr1= Vs- vr2= 12V-3V=9V Ir1= vr1/r1 = 9V/150Ω= 60mA
30. For the circuit shown in Figure 4.38b, calculate the voltage from point A to ground. = 12kΩ + 1.2kΩ= 13,200 x = 13.2kΩ = (9V)1.2kΩ/13.2kΩ = 0.818 x = 818mV
40. Calculate the component voltage and power values for the circuit shown in Figure 4.41b, along with the circuit values of and . = 12kΩ+62kΩ+1.5kΩ= 75,500 x = 75.5kΩ = 16V/75.5kΩ =