Chemical reactions can be used to produce electricity and electricity can be used to cause chemical reactions through oxidation-reduction reactions. The first part of the experiment measures the standard electrode potentials of five various half cells against the Cu2+(1M)|Cu half cell. The last three half cells are prepared through electrolysis. The electrode potentials of all reactions are positive which means that they are spontaneous. There is a significant percent difference from the theoretical and the experimental standard electrode potentials. The sources of error are incorrect solution preparation and contaminated materials. The second part of the experiment uses standard electrode potentials to predict whether or not a reaction will occur and eventually test that prediction. All the standard electrode potentials are positive which means that they are spontaneous, as directly observed. There is also a percent difference from the theoretical and experimental cell potentials. The sources of error are also incorrect solution preparations, contaminated glasswares and materials, and the resistance of the electrodes.
Keywords: cell potential, half-cell, electrode potential, oxidation-reduction reactions, standard electrode potential
Introduction
Chemical reactions can be used to produce electricity and electricity can be used to cause chemical reactions. The practical applications of electrochemistry are countless, ranging from batteries and fuel cells as electric power sources, to the manufacture of key chemicals, to the refining of metals, and to the methods of controlling corrosion.
The objective of this experiment is to measure the standard electrode potentials of five various half cells against the Cu2+(1M)|Cu half cell and to use the standard electrode potentials to predict whether or not a reaction will occur. The standard electrode potential, Eºcell, is the electric potential that develops on an electrode when the oxidized and reduced
References: [1] Masterton, William and Cecile Hurley. Chemistry: Principles and Reactions. United States: Brooks/Cole, 2005 [2] Petrucci, Ralph, and William Harwood. General Chemistry: Principles and Modern Applications. United States: Prentice-Hall, Inc., 1997