Perhaps one of the most useful yet taken-for-granted accomplishments of the recent centuries is the development of electric circuits. The flow of charge through wires allows us to cook our food, light our homes, air-condition our work and living space, entertain us with movies and music and even allows us to drive to work or school safely. In this unit of The Physics Classroom, we will explore the reasons for why charge flows through wires of electric circuits and the variables that affect the rate at which it flows. The means by which moving charge delivers electrical energy to appliances in order to operate them will be discussed in detail.
One of the fundamental principles that must be understood in order to grasp electric circuits pertains to the concept of how an electric field can influence charge within a circuit as it moves from one location to another. The concept of electric field was first introduced in the unit on Static Electricity. In that unit, electric force was described as a non-contact force. A charged balloon can have an attractive affect upon an oppositely charged balloon even when they are not in contact. The electric force acts over the distance separating the two objects. Electric force is an action-at-a-distance force.
Action-at-a-distance forces are sometimes referred to as field forces. The concept of a field force is utilized by scientists to explain this rather unusual force phenomenon that occurs in the absence of physical contact. The space surrounding a charged object is affected by the presence of the charge; an electric field is established in that space. A charged object creates an electric field - an alteration of the space or field in the region that surrounds it. Other charges in that field would feel the unusual alteration of the space. Whether a charged object enters that space or not, the electric field exists. Space is altered by the presence of a charged object; other objects in