I believe that enzymes are considered to be like adaptive keys that can be formed, shaped and conform to the shape of the substrate. The active site undergoes a change of dynamics and shape when the substrate is determined.…
Enzymes are proteins which serve to reduce the activation energy required for biological reactions (Russell and others 2010). This allows biologically important chemical reactions to occur rapidly enough to allow cells to carry out their life processes (Russell and others 2010). Enzymes are made of one or more polypeptide strands, which individually or as an associated complex take on a three-dimensional shape. When properly associated, these shapes form the active site and other supporting structures that allow enzymes to be effective catalysts (Nelson and Cox 2005).…
4. Describe what is measured as an indicator of sucrase activity and why this is an indicator of sucrase activity.…
The aim of this EEI was to test the effects of temperature on the activity of the enzyme Amylase. Solutions of starch and amylase were held at selected temperatures by various methods of temperature control. Once the solutions reached and maintained the desired temperature they were combined. Samples at timed intervals were then taken and reacted with a reagent to determine the effect the selected temperatures had on the reaction rate of enzyme and substrate. Results indicated that the enzyme functions efficiently at its optimum temperature (50oC) digesting the starch present and that any sign of enzyme function at 70oC is completely nonexistent. In summary the experiments conducted in the EEI succeeded in demonstrating the effects temperature has enzyme activity and just how vital enzymes are for biological life.…
Enzymes are catalysts that speed up chemical reaction but are not themselves consumed or changed by the reaction. The cell’s biological catalysts are proteins. Proteins are made up of one or more polypeptide chains that are folded to make an active site, an area in which a material to be acted on by the enzyme, called the substrate, will fit. The temperature,pH, the concentration of enzyme, and the concentration of substrate all affect the activity of the enzyme and the rate of the reaction.…
Enzymes are biological molecules that catalyze chemical reactions. In enzymatic reactions, the molecules at the beginning of the process, called substrates, are converted into different molecules, called products. Almost all chemical reactions in a biological cell need enzymes in order to occur at rates sufficient for life. Like all catalysts, enzymes work by lowering the activation energy for a reaction, thus dramatically increasing the rate of the reaction. As a result, products are formed faster and reactions reach their equilibrium state more rapidly. Most enzyme reaction rates are millions of times faster than those of comparable un-catalyzed reactions. As with all catalysts, enzymes are not consumed by the reactions they catalyze, nor do they alter the equilibrium of these reactions. However, enzymes do differ from most other catalysts in that they are highly specific for their substrates. Enzymes are known to catalyze about 4,000 biochemical reactions.…
For Activity A, we first tested enzyme activity. First, we used an H2O2 syringe to transfer 10 mL of H2O2 into an unlabeled 60-mL cup. Then, we used a transfer pipet to add one mL of catalase solution into the unlabeled 60-mL cup that we put H2O2 in. After that, we observed the solution for one minute. Then we tested the effect of boiling on enzyme activity. First we used a transfer pipet to transfer 4 mL of catalase into a test tube. After that, we placed the test tube filled with catalase in a boiling water bath for five minutes. While we were waiting, we rinsed the unlabeled cup we used earlier when we tested enzyme activity. Then we used a H2O2 syringe to transfer 10 mL of H2O2 into the rinsed unlabeled cup. After five minutes, we transferred 1 mL of the boiling catalase into the unlabeled cup with H2O2 in it with an unused transfer pipet and observed the results. After testing the effect of boiling on enzyme activity, we tested for catalase in living tissue. First, we rinsed the unlabeled 60 mL cup we used earlier. Then, we used a scalpel to cut a small piece of liver. After that, we macerated the piece of liver with a glass rod. When the liver was macerated enough, we put it in a cup with 10 mL of H2O2, which was transferred into the cup with a H2O2 syringe. Lastly, we observed the cup.…
The first screen that appears in Enzyme Lab shows you a biochemistry lab containing all the reagents and equipment you will need to perform your experiments.…
Design an experiment, based on the principles of diffusion and osmosis, that the assistant could…
* Enzymes bind to substrates = this helps to “ensure” correct angle/orientation higher percentage of collisions will result in a reaction.…
In our everyday lives, enzymes are used in our bodies, and in nature around us, to speed up the chemical reactions happening constantly, which happens by lowering the amount of activation energy needed to start various reactions. The way this works is by attaching the particular substrate to the active site of the enzyme, where it will start to aid the chemical reaction. Then, the allosteric site involves itself in forming the final 3D shape. For each specific reaction is a specific enzyme that helps speed up the reaction, and the reason for the variations of the enzymes is their unique protein structures. However, this means that once the structure of the enzyme is denatured and changed, the functions will most probably modify as well. In nature, this happens when the temperature and concentrations of different components are altered. In this lab experiment, we will be doing an in-depth research of exactly what happens to the enzymes, when it happens, and why it denatures the way it does.…
Enzymes are a protein serving as a catalyst, a chemical agent that changes the rate of the reaction without being consumed by the reaction. Enzymes are proteins made up of long chains of amino acids. These form complex shapes. The enzymes are individuals, like the different players on a ball team, they have different specific structures and jobs. As one ball player may be very tall and one short, the specific different shape of the active site on an enzyme is unique and prepares it to mix with a certain substrate. Without enzymes, the process of metabolism would be hopelessly slow. The reactant an enzyme acts on is referred to the enzyme 's substrate. The enzyme will combine with or to its substrate. While the two are joined, the substrate is converted to its product by catalytic action of the enzyme. There is an active site of the enzyme molecule which is a restricted region that actually attaches to the substrate. Usually the active site is formed by only a few of the enzyme 's amino acids, the rest is just the framework that reinforces the active site. In an enzymatic reaction, the substrate enters the active site then is held in place by weak bonds. Now the enzyme does its work and first changes shape so it can hold onto the substrate. Next the substrate is changed to its product, the product is released and the enzymes active site is ready and waiting for another molecule of substrate.…
• Enzymes are globular proteins whose shapes are specialised so that other chemicals (substrates) can form a temporary bond with them. There are two models used to show how an enzyme work:…
Dixie earned her LPN and ADN from Hawkeye Community College. She then went on to complete her MSN at…
The introduction is a statement of the subject and objectives of the experiment and presents your hypothesis. Relevant background information (appropriately referenced) is given in sufficient detail that a person unfamiliar with the topic can understand the nature of the experiment. A good introduction is clear and concise. Carbohydrates and proteins should be explained in terms of their structure and major functions in cells. Your intro should end with a brief overview of the amylase experiment, including your hypothesis and predictions about what expect will happen in each treatment group of the experimentThe introduction is a statement of the subject and objectives of the experiment and presents your hypothesis. Relevant background information (appropriately referenced) is given in sufficient detail that a person unfamiliar with the topic can understand the nature of the experiment. A good introduction is clear and concise. Carbohydrates and proteins should be explained in terms of their structure and major functions in cells. Your intro should end with a brief overview of the amylase experiment, including your hypothesis and predictions about what expect will happen in each treatment group of the experimentThe introduction is a statement of the subject and objectives of the experiment and presents your hypothesis. Relevant background information (appropriately referenced) is given in sufficient detail that a person unfamiliar with the topic can understand the nature of the experiment. A good introduction is clear and concise. Carbohydrates and proteins should be explained in terms of their structure and major functions in cells. Your intro should end with a brief overview of the amylase experiment, including your hypothesis and predictions about what expect will happen in each treatment group of the experimentThe introduction is a statement of the subject and objectives of the experiment and presents your hypothesis. Relevant background…