ENZYMES
Enzymes are biological catalysts. There are about 40,000 different enzymes in human cells, each controlling a different chemical reaction. They increase the rate of reactions by a factor of between 106 to 1012 times, allowing the chemical reactions that make life possible to take place at normal temperatures. They were discovered in fermenting yeast in 1900 by Buchner, and the name enzyme means "in yeast". As well as catalysing all the metabolic reactions of cells (such as respiration, photosynthesis and digestion), they may also act as motors, membrane pumps and receptors.
The active site of RUBISCO, the key enzyme in photosynthesis, contains just 6 amino-acids.
Substrate in active site
Enzyme Structure
Enzymes are proteins, and their function is determined by their complex structure. The reaction takes place in a small part of the enzyme called the active site, while the rest of the protein acts as "scaffolding". This is shown in this diagram of a molecule of the enzyme trypsin, with a short length of protein being digested in its active site. The amino acids around the active site attach to the substrate molecule and hold it in position while the reaction takes place. This makes the enzyme specific for one reaction only, as other molecules won't fit into the active site – their shape is wrong.
Many enzymes need cofactors (or coenzymes) to work properly. These can be metal ions (such as Fe2+, Mg2+, Cu2+) or organic molecules (such as haem, biotin, FAD, NAD or coenzyme A). Many of these are derived from dietary vitamins, which is why they are so important. The complete active enzyme with its cofactor is called a holoenzyme, while just the protein part without its cofactor is called the apoenzyme.
How do enzymes work?
There are three parts to our thinking about enzyme catalysis. They each describe different aspects of the same process, and you should know about each of them.
1.
Reaction Mechanism
In any chemical reaction,