Preview

Epsom Salt Lab Report

Satisfactory Essays
Open Document
Open Document
307 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Epsom Salt Lab Report
Epsom salt have many uses, including use as bath salts, as a laxative and as a plant nutrient. Epsom salt contains hydrated magnesium sulphate which has the formula MgSO4.xH2O.

Experiment to find the value of x in a pure sample of hydrated magnesium sulphate.

The method i will use is heating a known mass of magnesium sulphate to remove the water of crystallisation. x is found by weighing before and after heating to find the mass of the water then using the moles calculations to find x.

The source I have used is: http://www.rsc.org/learn-chemistry/resource/res00000436/finding-the-formula-of-hydrated-copper-ii-sulfate?cmpid=CMP00006780

1. Weigh the empty crucible, recording the weight, then add one spatula of them magnesium sulphate.


You May Also Find These Documents Helpful

  • Satisfactory Essays

    2. Weigh an antacid table in a weighing boat and record the mass (+0.01 g). Transfer the tablet to a clean mortar and crush the tablet into a fine powder using the pestle.…

    • 255 Words
    • 2 Pages
    Satisfactory Essays
  • Satisfactory Essays

    Step 4. (NOTE: Always handle the crucible with clean tongs.) When the crucible and cover are cool, weigh them together to the nearest 0.001 g and record this mass on the REPORT FORM (4).…

    • 474 Words
    • 2 Pages
    Satisfactory Essays
  • Satisfactory Essays

    * Add 2 g of alum crystals to crucible. Weigh crucible, cover, and crystals and record mass in data table.…

    • 1639 Words
    • 7 Pages
    Satisfactory Essays
  • Better Essays

    Class Action Lab Report

    • 1112 Words
    • 5 Pages

    Using the crucible tongs, take a magnesium strip and hold it in hot spot (just above the inner cone of fire) on the bunsen burner.…

    • 1112 Words
    • 5 Pages
    Better Essays
  • Satisfactory Essays

    The first step in the experiment was to measure the mass of the crucible for trial 1. The second step was to add the Sodium bicarbonate using the scoopula into the crucible. The mass of the crucible and the Sodium bicarbonate was weighed. Next, the mass of just the Sodium bicarbonate was determined by subtracting the mass of the crucible and the substance by the mass of the crucible by itself. For all three trials, the mass of just the Sodium bicarbonate was exactly 2 grams.…

    • 187 Words
    • 1 Page
    Satisfactory Essays
  • Good Essays

    3.09 Honors Chem Online

    • 536 Words
    • 3 Pages

    2. Heat the hydrate. After heating, record the mass of the crucible and the dehydrated compound.…

    • 536 Words
    • 3 Pages
    Good Essays
  • Powerful Essays

    4. Using the spatula add 3g of copper sulfate hydrate crystals to the crucible and determine the mass.…

    • 971 Words
    • 4 Pages
    Powerful Essays
  • Good Essays

    ○ Add 5-8 drops of the test solution into a test tube. Drop a 0.5 cm piece of magnesium…

    • 851 Words
    • 11 Pages
    Good Essays
  • Good Essays

    Magnesium Ribbon Lab

    • 278 Words
    • 2 Pages

    Curl the magnesium ribbon around a pencil to make a size that just fits inside the crucible. Do not curl the ribbon too tightly.…

    • 278 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Ionic Hydrate Lab Report

    • 465 Words
    • 2 Pages

    The process is to record the tare weight of a clean crucible. According to WiseGEEK, tare weight is the weight of an object (such as a jar, a cup, or, in this case, a crucible) when it is empty. You will add 2g of the copper sulfate hydrate crystals into the crucible, and then you weigh the crucible with the copper sulfate hydrate crystals and record the data. You then heat the crucible with the hydrate in it with a Bunsen burner for slightly more than 10 minutes, and then you weigh and record the data into your data table. After the weighing, it is reheated for five more minutes, and again weighed and recorded. If the masses are not within 0.05g of each other, you reheat it for another two minutes, weigh the masses again, and record the data. Keep reheating it until the weights are within 0.05g of each other. Then you will calculate and analyze…

    • 465 Words
    • 2 Pages
    Good Essays
  • Satisfactory Essays

    1) Weigh the amount of the mixture on the digital scale. Separate the Iron out by using a magnet to filter out the Iron element.…

    • 522 Words
    • 3 Pages
    Satisfactory Essays
  • Good Essays

    Chemical Formula Lab

    • 1437 Words
    • 6 Pages

    Obtain and wear goggles. 2. Measure and record the mass of a clean, dry crucible without cover. Obtain about 1 g of the unknown copper chloride hydrate and place it in the crucible. Use a spatula to break up any large pieces of the substance by pressing the pieces against the wall of the crucible. Measure and record the mass of the crucible with compound. 3. Set up a ring stand, ring, and clay triangle for heating the sample. Rest the crucible on the clay triangle. Set up a lab burner and ignite the burner away from the crucible. Adjust the burner to get a small flame. 4. Hold the burner in your hand and move the flame slowly back and forth underneath the crucible to gently heat the sample. Do not overheat the compound. Note the color change, from blue-green to brownish, as the water of hydration is driven out of the crystals. When the sample has turned brown, gently heat the crucible for two more minutes. 5. Remove and turn off the burner. Cover the crucible and allow the sample to cool for about ten minutes. 6. Remove the crucible cover and inspect your sample. If you see any blue-green crystals, reheat the sample until the crystals have turned brown. 7. Measure and record the mass of the cool crucible of your copper chloride sample. 8. Transfer the brown solid to a clean and empty 50 mL beaker. Rinse out the crucible with two 8 mL aliquots of distilled water and pour the water into the 50 mL beaker. Gently swirl the beaker to completely dissolve the solid. Note that the color of the solution is green as the copper ions are rehydrated. 9. Measure out about 20 cm of aluminum wire, coil the wire, and place the wire in the beaker of solution so that it is completely immersed in the copper chloride solution. Note that the reaction produces a gas, elemental copper is forming on the surface of the aluminum wire, and the color of the solution is fading. The reaction will take about 30 minutes to complete. 10. When the reaction is done, the solution will be colorless.…

    • 1437 Words
    • 6 Pages
    Good Essays
  • Good Essays

    Chemistry

    • 390 Words
    • 2 Pages

    Place magnesium ribbon in a clean crucible (on a clay triangle above a Bunsen burner). Heat until the magnesium begins to burn.…

    • 390 Words
    • 2 Pages
    Good Essays
  • Powerful Essays

    Hydrate Composition

    • 1334 Words
    • 6 Pages

    Hydrates are chemical compounds that contain discrete water molecules as part of their crystalline structure. Water is bound in most hydrates in definite, stoichiometric proportions, and the number of water molecules bound per metal ion is often characteristic of a particular metal ion. Many hydrated salts can be transformed to the anhydrous (without water) compound by application of heat. In this experiment, we determine the empirical formula of copper (II) sulfate – CuSO4.…

    • 1334 Words
    • 6 Pages
    Powerful Essays
  • Good Essays

    Farhampton Inn

    • 498 Words
    • 2 Pages

    Obtain a piece of magnesium ribbon approximately 50 cm long. Coil the magnesium and add it to the crucible. Weigh the crucible, cover and magnesium.…

    • 498 Words
    • 2 Pages
    Good Essays

Related Topics