1. A wheel has a radius of 4.1 m. How far (path length) does a point on the circumference travel if the wheel is rotated through angles of 30°, 30 rad, and 30 rev, respectively? 2.1m, 1.2x102 m, 7.7. x102m
2. A centrifuge in a medical laboratory rotates at an angular speed of 3 600 rev/min. When switched off, it rotates through 50.0 revolutions before coming to rest. Find the constant angular acceleration of the centrifuge. -226 rad s-2
3. A machine part rotates at an angular speed of 0.60 rad/s; its speed is then increased to 2.2 rad/s at an angular acceleration of 0.70 rad/s2. Find the angle through which the part rotates before reaching this final speed. 3.2 rad
4. A coin with a diameter of 2.40 cm is dropped on edge onto a horizontal surface. The coin starts out with an initial angular speed of 18.0 rad/s and rolls in a straight line without slipping. If the rotation slows with an angular acceleration of magnitude 1.90 rad/s2, how far does the coin roll before coming to rest? 1.02 m
5. A rotating wheel requires 3.00 s to rotate 37.0 revolutions. Its angular velocity at the end of the 3.00-s interval is 98.0 rad/s. What is the constant angular acceleration of the wheel? 13.7 rad s-2
6. It has been suggested that rotating cylinders about 10 mi long and 5.0 mi in diameter be placed in space and used as colonies. What angular speed must such a cylinder have so that the centripetal acceleration at its surface equals the free-fall acceleration on Earth? 4.9 x 10-2 m s-1
7. (a) What is the tangential acceleration of a bug on the rim of a 10-in.-diameter disk if the disk moves from rest to an angular speed of 78 rev/min in 3.0 s? (b) When the disk is at its final speed, what is the tangential velocity of the bug?
0.35 m s-2, 1.0 m s-1
8. A sample of blood is placed in a centrifuge of radius