Exponential function
Representation e^x \,
Inverse \ln x \,
Derivative e^x \,
Indefinite Integral e^x + C \,
The graph of y = ex is upward-sloping, and increases faster as x increases. The graph always lies above the x-axis but can get arbitrarily close to it for negative x; thus, the x-axis is a horizontal asymptote. The slope of the tangent to the graph at each point is equal to its y coordinate at that point. The inverse function is the natural logarithm ln(x); because of this, some old texts[3] refer to the exponential function as the antilogarithm.
Sometimes the term exponential function is used more generally for functions of the form cbx, where the base b is any positive real number, not necessarily e. See exponential growth for this usage.
In general, the variable x can be any real or complex number, or even an entirely different kind of mathematical object; see the formal definition below. Part of a series of articles on
The mathematical constant e
Euler's formula.svg
Natural logarithm · Exponential function
Applications in: compound interest · Euler's identity & Euler's formula · half-lives & exponential growth/decay
Defining e: proof that e is irrational · representations of e · Lindemann–Weierstrass theorem
People John Napier · Leonhard Euler
Schanuel's conjecture
Contents [hide]
1 Formal definition
2