The three fiber geometry parameters that have the greatest impact on splicing performance include the following:
Cladding diameter—the outside diameter of the cladding glass region. core/clad concentricity (or core-to-cladding offset)—how well the core is centered in the cladding glass region fiber curl—the amount of curvature over a fixed length of fiber
These parameters are determined and controlled during the fiber-manufacturing process. As fiber is cut and spliced according to system needs, it is important to be able to count on consistent geometry along the entire length of the fiber and between fibers and not to rely solely on measurements made.
The cladding diameter tolerance controls the outer diameter of the fiber, with tighter tolerances ensuring that fibers are almost exactly the same size. During splicing, inconsistent cladding diameters can cause cores to misalign where the fibers join, leading to higher splice losses. The drawing process controls cladding diameter tolerance, and depending on the manufacturer’s skill level, can be very tightly controlled.
Tighter core/clad concentricity tolerances help ensure that the fiber core is centered in relation to the cladding. This reduces the chance of ending up with cores that do not match up precisely when two fibers are spliced together. A core that is precisely centered in the fiber yields lower-loss splices more often.
Core/clad concentricity is determined during the first stages of the manufacturing process, when the fiber design and resulting characteristics are created. During these lay down and consolidation processes, the dopant chemicals that make up the fiber must be deposited with precise control and symmetry to maintain consistent core/clad concentricity performance throughout the entire length of fiber.
Fiber curl is the inherent curvature along a specific length of optical fiber that is exhibited