Summary The objectives of the experiment is to study the validity of the Bernoulli equation and to determine the coefficient of discharge, Cd, by calibrating the venturi tube as a flow meter. To investigate the validity of the Bernoulli equation, the static pressure is taken at each tapping and the total head is determined for the maximum difference setting. The velocity head is calculated using the Bernoulli equation. To calculate Cd, the volumetric flow rate is measured for the maximum and minimum settings and for eight intermediate values. From the experimental analysis, it can be deduced that the total head does not remain constant due to frictional losses and experimental errors and thus the Bernoulli equation is not obeyed. The value of Cd calculated from figure is 0.92, close to the actual value, within experimental errors.
Introduction The flow along a venturi tube is another simple application of Bernoulli’s equation. The principle of the venturi meter was demonstrated in 1971 by the Italian Giovanni Battista Venturi (1746- 1822) but it was not until 1887 that the principle was applied by the American Clemens Herschel (1842- 1930), to a practical instrument for measuring the rate of flow of a fluid. The device consists essentially of a convergence in pipe- line, followed by a short parallel- sided throat and a divergence, called as a diffuser. Venturi meters are one among the many flow meters used in industries to measure flow rate. They are widely used in large diameter pipes such as those found in waste treatment plants. The aims of the experiment is to check the validity of the Bernoulli equation when applied to the steady flow of water in a tapered duct and to calibrate the venture as a flow meter to determine the coefficient of discharge, Cd. The total head for the maximum difference setting was calculated and was found to be 0.2675m. From the experimental results, it was deduced that the