THERMODYNAMICAL,
THERMOPHYSICAL, AND
RHEOLOGICAL PROPERTIES OF
FRUITS AND FRUIT PRODUCTS
4.1. INTRODUCTION
Most processed and many freshly consumed fruits receive some type of heating or cooling during handling or manufacturing. Design and operation of processes involving heat transfer needs special attention due to heat sensitivity of fruits. Both theoretical and empirical relationships used when designing, or operating, heat processes need knowledge of the thermal properties of the foods under consideration. Food thermal properties can be defined as those properties controlling the transfer of heat in a specified food. These properties are usually classified (Perry and Green, 1973) into thermodynamical properties, viz, specific volume, specific heat, and enthalpy; and heat transport properties, namely, thermal conductivity and thermal diffusivity.
When considering the heating or cooling of foods, some other physical properties must be considered because of their intrinsic relationship with the ‘‘pure’’ thermal properties mentioned, such as density and viscosity. Therefore, a group of thermal and related properties, known as thermophysical properties, provide a powerful tool for design and prediction of heat transfer operation during handling, processing, canning, and distribution of foods
(Fig. 4.1). Abundant information on thermophysical properties of food (Polley et al., 1980;
Wallapapan et al., 1983; Choi and Okos, 1986; Rahman, 1995) is available to the design engineer. However, finding relevant data is usually the controlling step in the design of a given food operation, and the best solution may be the experimental determination.
This chapter provides data and information for thermal process calculation for fruits and fruit products, including a brief description of more commonly used methods for measurement and determination of thermophysical properties.
4.2. THERMOPHYSICAL PROPERTIES’ IDENTIFICATION
Thermophysical
References: Alvarado, J.D.D. (1991). Specific heat of dehydrated pulps of fruits. J. Food Process Eng. 14: 361–368. Andrieu, J., Gonnet, E. and Laurent, M. (1989). Thermal conductivity and diffusivity of extruded Durum Wheat Pasta Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (2002). Transport Phenomena, 2nd ed. John Wiley & Sons, Inc., NY, 920 pp. Bourne, M.C. (1982). Food Texture and Viscosity: Concept and Measurement. Academic Press, NY, USA. Chang, H.D. and Tao, L.C. (1981). Correlations of enthalpies of food systems. J. Food Sci. 46: 1493–1498. Choi, Y. and Okos, M.R. (1986). Effects of temperature and composition on the thermal properties of foods. In Food Engineering and Process Applications, Vol Constenla, D.M., Lozano, J.E. and Crapiste, G.H. (1989). Thermophysical properties of clarified apple juice as a function of concentration and temperature Crapiste, G.H. and Lozano, J.E. (1988). Effect of concentration and pressure on the boiling point rise of apple juice and related sugar solutions Da Silva, J.A., Goncalves, M.P. and Rao, M.A. (1992). Rheological properties of high-methoxyl pectin and locust bean gum solutions in steady shear Dickerson R.W. (1965). An apparatus for measurement of thermal diffusivity of foods. Food Technology. 19(5), 198–204. Dickerson Jr., R.W. (1968). Thermal properties of foods. In The freezing preservation of foods, Vol. 2, 4th ed. AVI Publishing Company, Inc., Westport, CT, Chapter 2, pp Dickerson, Jr., R.W. (1969). Thermal properties of foods. 4th ed., vol. 2 (Tressler, D.; Van Arsdel; Copley, M.J. Eds), AVI Drouzas, A.E., Maroulis, Z.B., Karathanos, V.T. and Saravacos, G.D. (1991). Direct and indirect method determination of the effective thermal diffusivity of granular starch. J. Food Eng. 13(2): 91–94. Farkas, B.E. and Singh, R.P. (1991). Physical properties of air-dried and freeze-dried chicken white meat. J. Food Sci. Fitch, D.L. (1935). A new thermal conductivity apparatus. Am. Phys. Teacher 3(3): 135–136. Gordon, C. and Thorne, S. (1990). Determination of the thermal diffusivity of foods from temperature measurement during cooling Gupta, T.R. (1990). Specific heat of Indian unleavened flat bread at various stage of cooking. J. Process. Eng. 13: 217–220. Harper, J.U.C. and El Sahrigi. (1965). Viscometric behavior of tomato concentrates. J. Food Sci. 30: 470–474. Hayakawa, K. (1973). New computational procedure for determining the apparent thermal diffusivity of a solid body approximated with an infinite slab Hayashi, K., Nishikawa, T. and Uei, I. (1974). Studies on thermal conductivity measurement of granular materials in system of solid, fluid mixture Heldman, D.R. 1975. Food Process Engineering Connecticut: AVI Publishing. Heldman, D.R. and Singh, R.P. (1981). Food Process Engineering. AVI Publishing Company, Inc., Westport, CT. Honing, P. 1953. Principles Of Sugar Technology. Volume 1. Elsevier Publishing Company, New York. Hsieh, R.C., Lerew, L.E. and Heldman, D.R. (1977). Predictions of freezing times for foods as influenced by product properties Hsu, M.-H., Mannapperuma, J.D. and Singh, R.P. (1991). Physical and thermal properties of pistachios. J. Agric. Hwang, M.P. and Hayakawa, K. (1979). A specific heat calorimeter for foods. J. Food Sci. 44(2): 435–441. Ibarz, A.; Vicente, M.; Graell, J. (1987). Rheological behavior of apple juice and pear juice and their concentrates. Jindal, V.K. and Murakami, E.G. (1984). Thermal properties of shredded coconut. In Engineering and Food, Vol. 1, McKenna, B.M Johnson, J.F., Martin, J.R. and Porter, R.S. (1975). Determination of viscosity of food systems. In Theory, Determination and Control of Physical Properties of Food Materials, Rha Editor, C Jowitt, R., Eseher, F., Kent, M., McKenna, R. and Roques, M. (1983). Physical Properties of Foods, Vols. 1 and 2. Karel, M., Fennema, O.R. and Lund, D.B. (1975). Heat transfer in foods. In Principles of Food Science. Part II: Physical Principles of Food Preservation, Fennema, O Kent, M., Christiansen, K., van Haneghem, I.A., Holtz, E., Morley, M.J., Nesvadba, P. and Poulsen, K.P. (1984). Keppler, R.A. and Boose, J.R. (1970). Thermal properties of frozen sucrose solutions. Trans. ASAE 13(3): 335–339. Kirk-Othmer Encyclopedia of Chemical Technology (1964). 2nd. ed. John Willey and Sons, Inc., NY, London, Sydney. Kokini, J.L. (1992). Rheological properties of foods. In Handbook of Food Engineering, Heldman, D.R. and Lund, D.B Kubota, K., Matsumoto, T., Kurisu, S., Suzuki, K. and Hosaka, H. (1980). The equation regarding temperature and concentration of the density and viscosity of sugar, salt and skim milk solutions Kunz, I.D. and Kauzmann, W. (1974). Hydration of proteins and polypeptides. Adv. Protein Chem. 28: 239–242. Lewis, M.J. (1987). Physical Properties of Foods and Food Processing Systems. Ellis Horwood Ltd/ VCH Verlagsgessellschaft, GmbH, England/FRG. Lozano, J.E., Urbicain, M.J. and Rotstein, E. (1979). Thermal conductivity of apples as a function of moisture content Lozano, J.E., Urbicain, M.J. and Rotstein, E. (1980). Total porosity and open pore porosity in the drying of fruits. Lozano, J.E., Urbicain, M.J. and Rotstein, E. (1983). Shrinkage, porosity and bulk density of foodstuffs at changing moisture content Mannapperuma, J.D. and Singh, R.P. (1989). A computer aided method for the prediction of properties and freezing/ thawing times of foods Maroulis, S.N. and Saravacos, G.D. (1990). Density and porosity in drying starch materials. J. Food Sci. 55(5): 1367–1375. Maroulis, Z.B., Shah, K., Saravacos, G.D. (1991). Thermal conductivity of gelatinized starches. J. Food Sci. 56(3). Mattea, M., Urbicain, M.J. and Rotstein, E.R. (1986). Prediction of thermal conductivity of vegetable foods by the effective medium theory Mattea, M., Urbicain, M.J. and Rotstein, E.R. (1989). Effective thermal conductivity of cellular tissues during drying: prediction by a computer assisted model Mattick, L.R. and Moyer, J.C. 1983. Composition of apple juice. J. Assoc. 0:T Anal. Chem. 66: 1251. Maxwell, J.C. (1904). A Treatise on Electricity and Magnetism, Vol. 1, 3rd ed. The Clarendon Press, Oxford, p. 440. Maxwell, J.L., Kurt, F.A., and Strelka, B.J. (1984). Specific Volume (density) of saccharine solutions (corn syrups