This experiment of the friction loss along a smooth pipe shows that there are existence of laminar and transitional flows as stated in Graph 2.0 and Graph 2.1. It is proven that the higher velocity along the smooth bore pipe, the higher is the head loss of water. As shown in Table 3.0, when the Reynolds’ number increases, the value of pipe coefficient friction, f decreases along the decreasing stead laminar line. On top of that, there are energy loss from the water to the surface of the pipe and therefore, the temperature increases when velocity, flow rate and head loss increases respectively. The percentage difference of obtained head loss and calculated head loss are 2.5%, 19.0%, 32.0%, 27.0% and 30.0% whereby the differences are not major and in the acceptable range. There are few factors in affecting the head loss which are flow rate, inner diameter of the pipe, roughness of the pipe wall, corrosion and scale deposits, viscosity of the liquid, fittings and also straightness of the pipe. There are existence of both human errors, parallax errors and environmental effect but there are always error counters to be taken place to increase the accuracy of the results.
Introduction Basically, friction loss refers to the loss of energy which occurs in the pipe flow due to viscous effects generated by the surface of the 3mm ID pipe. It is understandable that friction loss is a major loss rather than minor loss including energy lost due to obstructions. Loss of head occurred by the mixing of fluid which occurs at fittings such as bends or valves, and also frictional resistance at the pipe wall. Besides, the major part of the head loss will be due to the local mixing near the fittings.
Figure 1.0 Illustration of Fully Developed Flow along a Pipe Based on the figure above shows how the flow goes along the length of 0.52m with 3mm ID pipe which can be found in our experiment. Those fittings such as valves or bends are sufficiently remote to reduce any
References: 1. n.a. (February 9, 2013). STA-RITE, Pentair Water. In Head Loss in Piping Systems. From http://www.sta-rite.com/ResidentialPage_techinfopage_headloss.aspx. 2. n.a. (August 4, 2013). Pipe friction loss. Retrieved February 8, 2013, from http://www.jfccivilengineer.com/pipe_friction_loss.htm. 3. Wikipedia. (January 23, 2013). Friction loss. In Wikipedia, The Free Encyclopedia. Retrieved February 7, 2013, from http://en.wikipedia.org/wiki/Friction_loss. 4. n.a.. (February 6, 2013). Laboratory #8 - Head Losses in Pipe Flow. In CE 319F. From http://www.ce.utexas.edu/prof/kinnas/319LAB/Lab/Lab%208-Head%20Losses%20in%20Pipe%20Flow/Lab8.htm.