FUZZY LOGIC
How can a logic which is "fuzzy" be useful?
As humans, we often rely on imprecise expressions like "usually", "expensive", or "far". But the comprehension of a computer is limited to a black-white, everything-or-nothing, or true-false mode of thinking. Within conventional logic, terms can be only "true" or "false" i.e. either 0 or 1. Fuzzy logic allows a generalization of conventional logic. It provides for terms between "true" and "false" like "almost true" or "partially false". Therefore, fuzzy logic cannot be directly processed on computers but must be emulated by special code. The binary logic of modern computers often falls short when describing the vagueness of the real world. Fuzzy logic offers more graceful alternatives. Computers do not reason as brains do. Computers "reason" when they manipulate precise facts that have been reduced to strings of zeros and ones and statements that are either true or false. The human brain can reason with vague assertions or claims that involve uncertainties or value judgments: The air is cool," or "That speed is fast" or "She is young." Unlike computers, humans have common sense that enables them to reason in a world where things are only partially true. Fuzzy logic is a branch of machine intelligence that helps computers paint gray, commonsense pictures of an uncertain world. Logicians in the 1920s first broached its key concept: everything is a matter of degree.
�Fuzzy logic manipulates such vague concepts as "warm" or "still dirty" and so helps engineers to build air conditioners, washing machines and other devices that judge how fast they should operate or shift from one setting to another even when the criteria for making those changes are hard to define. When mathematicians lack specific algorithms that dictate how a system should respond to inputs, fuzzy logic can control or describe the system by using "commonsense" rules that refer to indefinite quantities. No known