Abhi Thube
Principles of Engineering II
Visualize a world where anyone can do anything, regardless of age or physical conditions. Nobody would age nor develop any illnesses or disorders. Essentially, this would be a society in which everyone is perfect. Such a thought would be the result of genetic engineering, which is the modification of an organism’s genome using biotechnology. Scientists alter the genetic makeup of an organism by using techniques that remove inherited material or inject DNA from outside the organism either directly into the host or into a cell that is then crossbred with the host (Clapper, 2013). The goal of genetically modifying organisms is to fix imperfections and improve their capabilities. In humans, genes that cause diseases and disorders can be identified and defenses can be put up to fight them. After hours of research and weeks of studying on the topic, I have reached a conclusion that humans should be able to be genetically engineered, but there needs to be a limit to how much they are modified. Some benefits of this include the absence of diseases, the ability for parents to choose the physical traits for their child, and increased human capabilities.
One major benefit of the genetic engineering of humans is the termination of physical disorders. Life without diseases would mean that everyone, no matter the age, would be healthy and capable of doing whatever they please. The Human Genome Project is currently working on identifying all the genes in the human body and their purposes (Hanna, 2006). They will then be able to work on preventing diseases by removing or replacing the defective gene in a process known as gene therapy. In the movie GATTACA, Vincent, who was born without the aid of genetic selection, was tested to show that he had a high probability of developing mental disorders as well as a heart defect (GATTACA, 1997). However, the second son Anton, who was genetically modified,