Cellular respiration, in the process of ATP synthesis, refers collectively to intercellular reactions in which energy-rich molecules are broken down to form ATP, using O2 and producing CO2 (2). In most cells, ATP is generated from the disassembling of absorbed nutrient molecules in three stages, glycolysis: in the cytosol, the citric acid cycle: in the mitochondrial matrix and oxidative phosphorylation: at the mitochondrial inner membrane (1). The 6-carbon molecule of Glucose is broken down into 3-carbon pyruvate molecules during the nine stages of glycolysis. However, for this reaction to occur, 2 ATP molecules must be broken down to power the segregation process of glucose into 2 pyruvates (3). Throughout this process, glycolysis produces four ATP, which results in an overall gain of ATP for the entire …show more content…
The low-energy yield of glycolysis is not enough to support the body’s requirements of ATP, leading to further processes (2). The citric acid cycle reactions begin between acetyl-CoA and the four-carbon oxaloacetate to form a six-carbon citric acid (1). Throughout the various steps of the cycle, two of the 6 carbons of the citric citric acid leave as carbon dioxide to ultimately yield the four carbon product, oxaloacetate. Using one molecule of acetyl-CoA, the civic acid cycle has resulted in - the oxidization of the acetyl-CoA to form two molecules of carbon dioxide, three molecules of NAD were reduced to NADH, one molecule of FAD was reduced to FADH2 and one molecule of GTP (equivocating to ATP) was produced (1). The cell still has not acquired enough energy , although the hydrogen carrier molecules are now prepared the final stage. Oxidative phosphorylation’s process includes the entrance of NADH and FADH (produced in earlier phases) into the mitochondria where they are