The number gained a degree of popular attention when Martin Gardner described it in the "Mathematical Games" section of Scientific American in November 1977, writing that, "In an unpublished proof, Graham has recently established ... a bound so vast that it holds the record for the largest number ever used in a serious mathematical proof." The 1980 Guinness Book of World Records repeated Gardner's claim, adding to the popular interest in this number. According to physicist John Baez, Graham invented the quantity now known as Graham's number in conversation with Gardner himself. While Graham was trying to explain a result in Ramsey theory which he had derived with his collaborator B. L. Rothschild, Graham found that the quantity now known as Graham's number was easier to explain than the actual number appearing in the proof. Because the number which Graham described to Gardner is larger than the number in the paper itself, both are valid upper bounds for the solution to the Ramsey-theory problem studied by Graham and Rothschild.[1]
Graham's number is unimaginably larger than other well-known large numbers such as a googol, googolplex, and even larger than Skewes' number and Moser's number. Indeed, like the last three of those numbers, the observable universe is far too small to contain an ordinary digital representation of Graham's number, assuming that each digit occupies at least one Planck volume. Even power towers of the form are useless for this purpose, although it can be easily described by recursive formulas using Knuth's up-arrow notation or the equivalent, as was done by Graham. The last ten digits of Graham's number are ...2464195387.
Specific integers known to be far larger than Graham's number have since appeared in many serious mathematical proofs (e.g., in connection with Friedman's various finite forms of