Given data: Thi := 250 °C Tci := 30 °C mh := 0.15 kg s mc := 0.6 kg s
cph := 2000
J kg⋅ K
cpc := 1000
J kg⋅ K
U := 1000
W m K
2
Finding Heat Exchanger Area(A0):
2
Cc := mc⋅ cpc = 600
m ⋅ kg K⋅ s
3
Ch := mh⋅ cph = 300
m ⋅ kg K⋅ s
3
2
Tco :=
mh⋅ cph⋅ Thi + mc⋅ cpc⋅ Tci mh⋅ cph + mc⋅ cpc
4
= 103.333 °C
Tho := Tco
Q := Ch⋅ ( Thi − Tho) = 4.4 × 10 W Thi − Tco − ( Tho − Tci) Thi − Tco ln Tho − Tci Cc Ch Ch Cc ε0 := if ( Cc < Ch) otherwise = 0.5
∆Tlm :=
= 105.798 ∆°C
C0 :=
Taking C0=Cmin/Cmax
Cmin :=
Cc if Cc < Ch Ch otherwise
Q Cmin⋅ ( Thi − Tci)
= 0.667
HEX effectiveness
ln NTU :=
1 − ε0 = 1.386
1 − C0
1 − C0⋅ ε0
Hence A0 := NTU⋅
Cmin U
= 0.416 m
2
Problelm 3.7
Given data: Do := 25.4mm Tci := −7 °C mh := 0.6 kg s mc := 2.4 kg s Tco := 0 °C
cph := 4180
J kg⋅ K
cpc := 5200
J kg⋅ K
U := 120
W m K
2
Thi := 85 °C
a) Finding Heat Exchanger Area(A0) for a Cross Flow:
2 4 m ⋅ kg 2 3 m ⋅ kg
Cc := mc⋅ cpc = 1.248 × 10
K⋅ s
3
Ch := mh⋅ cph = 2.508 × 10
K⋅ s
3
Q := Cc⋅ ( Tco − Tci) = 8.736 × 10 W
4
Cmin :=
Cc if Cc < Ch Ch otherwise
Qmax := Cmin⋅ ( Thi − Tci) = 2.307 × 10 W
5
C0 :=
Cc Ch Ch Cc
if ( Cc < Ch) otherwise
= 0.201
Taking C0=Cmin/Cmax
ε0 :=
Q Qmax
= 0.379
HEX effectiveness
ln NTU :=
1 − ε0 = 0.496
1 − C0
1 − C0⋅ ε0
Hence A0 := NTU⋅
Cmin U
= 10.375 m
2
Problelm 3.7
Given data: Do := 25.4mm Tci := −7 °C mh := 0.6 kg s mc := 2.4 kg s Tco := 0 °C
cph := 4180
J kg⋅ K
cpc := 5200
J kg⋅ K
U := 120
W m K
2
Thi := 85 °C
b) Finding Heat Exchanger Area(A0) for a 1-2 TEMA E:
2 4 m ⋅ kg 2 3 m ⋅ kg
Cc := mc⋅ cpc = 1.248 × 10
K⋅ s
3
Ch := mh⋅ cph = 2.508 × 10
K⋅ s
3
Q := Cc⋅ ( Tco − Tci) = 8.736 × 10 W
4
Cmin :=
Cc if Cc < Ch Ch otherwise
Qmax := Cmin⋅ ( Thi −