Preview

Heat Transfer Lab Manual

Good Essays
Open Document
Open Document
4896 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Heat Transfer Lab Manual
[pic]

AEROSPACE ENGINEERING
LAB 1
(MEC 2700)

LABORATORY
MANUAL

JULY 2007

Table of Contents Experiment 1: Heat Capacity of Gases Experiment 2: Thermal and Electrical Conductivity of Metals Experiment 3: Heat Pump Experiment 4: Heat Conduction Experiment 5: Free and Forced Convection Experiment 6: Thermal Radiation

Experiment 1: Heat Capacity of Gases

1. BACKGROUND

The first law of thermodynamics can be illustrated particularly well with an ideal gas. This law describes the relationship between the change in internal intrinsic energy ΔUi the heat exchanged with the surroundings ΔQ and the constant-pressure change pdV.

dQ = dUi + pdV (1)

The molar heat capacity C of a substance results from the amount of absorbed heat and the temperature change per mole:

(2)

n = number of moles

One differentiates between the molar heat capacity at constant volume CV and the molar heat capacity at constant pressure Cp.

According to equations (1) and (2) and under isochoric conditions (V const., dV = 0), the following is true:

(3)

and under isobaric conditions (p = const., dp = 0):

(4)

Taking the equation of state for ideal gases into consideration:

pV = n R T (5)

it follows that the difference between Cp and CV for ideal gases is equal to the universal gas constant R.

Cp – CV = R (6)

It is obvious from equation (3) that the molar heat capacity CV is a function of the internal intrinsic energy of the gas. The internal energy can be calculated with the aid of the kinetic gas theory from the number of degrees of freedom f:

(7) where kB = 1.38 · 10-23 J/K (Boltzmann Constant)

NA = 6.02 · 1023 mol-1 (Avogadro's number)

Through substitution of

R = kB NA (8)

it follows that

(9)

and taking equation (6) into

You May Also Find These Documents Helpful

  • Good Essays

    Charles’s Law (also known as the law of volumes) is an experimental gas law which describes how gases tend to expand when heated. At constant pressure, the volume of a given mass of an ideal gas increases or decreases by the same factor as its temperature on the absolute temperature scale. It can be written as V∞T where V is the volume or the gas and T is the absolute temperature.…

    • 807 Words
    • 4 Pages
    Good Essays
  • Good Essays

    PHYS172 Lab14

    • 2023 Words
    • 10 Pages

    of the temperature. Note that since the specific heat capacity per atom C involves a T ,…

    • 2023 Words
    • 10 Pages
    Good Essays
  • Good Essays

    Chemistry 17.1 - 17.4

    • 439 Words
    • 2 Pages

    the heat capacity of an object depends on both its mass and its chemical composition…

    • 439 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Under conditions of constant pressure the heat absorbed or released is termed enthalpy (or "heat content"). We do not measure enthalpy directly, rather we are concerned about the heat added or lost by the system, which is the change in enthalpy (or ΔH The quantity of heat gained or lost by a system, ΔH, is dependent upon, the mass, m, of the system: the more massive an object the more heat needed to raise its temperature, the change in temperature, (ΔT): the larger the temperature change in a system the more heat exchanged, and the nature of the substance(s) making up the system. The last quantity is defined by the heat capacity of the system. For a given substance, the specific heat capacity is defined as the quantity of heat needed to raise 1 gram of the substance by 1 degree Celcius. Specific heat capacity has units of joules per degree Celcius per gram, J.g-1.ºC-1.The three quantities combine to give the quantity of heat gained, or lost, by a system:…

    • 2451 Words
    • 10 Pages
    Good Essays
  • Better Essays

    In comparison to solids and liquids, gases have many distinctive characteristics such as, it’s compressibility and it’s ability to obtain the volume (shape) of its container. Such properties of gases are vital to society and industries for essential science based theory. Boyle’s Law sometimes referred as the Boyle-Mariotte Law is one of several gas laws as well as a special case of the Ideal Gas Law. Generally, Boyle’s laws explain the inversely comparative relationship among the complete pressure and capacity of gas, if the temperature is reserved in stable within a closed system. The mathematical expression for Boyles Law is:…

    • 1293 Words
    • 6 Pages
    Better Essays
  • Good Essays

    Chemistry Final Study

    • 736 Words
    • 3 Pages

    The Ideal Gas Law is PV = nRT , with nrepresenting the number of moles.…

    • 736 Words
    • 3 Pages
    Good Essays
  • Powerful Essays

    Thermodynamics Lab

    • 895 Words
    • 4 Pages

    Q = c x m x t q = (4.18)(1.02 g/ml x 50ml )(3.9 oC) = -831 J…

    • 895 Words
    • 4 Pages
    Powerful Essays
  • Good Essays

    A2 Physics Summary

    • 689 Words
    • 3 Pages

    3.Explain why an increase in internal energy of an ideal gas is directly related to a…

    • 689 Words
    • 3 Pages
    Good Essays
  • Good Essays

    In the appendix, show the derivation to obtain the equation used to calculate the heat capacity of the calorimeter.…

    • 2516 Words
    • 11 Pages
    Good Essays
  • Good Essays

    Calorimetry Prelab

    • 929 Words
    • 4 Pages

    Heat of capacity of the calorimeter: "Cp" must be calculated at the beginning of every calorimeter experiment in Joules/ °C…

    • 929 Words
    • 4 Pages
    Good Essays
  • Better Essays

    The first law of thermodynamics states that energy must be conserved in any thermodynamic process. The change in internal energy of a system is equal to the head added…

    • 1030 Words
    • 5 Pages
    Better Essays
  • Powerful Essays

    Vapor Lab

    • 679 Words
    • 3 Pages

    Where P = Pressure V = Volume n = number of moles R = ideal gas constant and T = temperature.…

    • 679 Words
    • 3 Pages
    Powerful Essays
  • Good Essays

    Physics p, 2 + 3

    • 1405 Words
    • 5 Pages

    The specific heat capacity of a substance is a measure of how much heat energy it can hold. It is the energy needed to increase the temperature of 1 kg of the substance by 1 ºC. Different substances have different specific heat capacities.…

    • 1405 Words
    • 5 Pages
    Good Essays
  • Good Essays

    Chetos

    • 971 Words
    • 4 Pages

    The amount of heat needed to increase the temperature of an object exactly 1°C is the heat capacity of that object. The specific heat capacity of a substance is then the amount of heat it takes to raise the temperature of 1g of the substance1°C. Caliometry is the precise measurement of the heat flow into or out of a system for chemical and physical processes. Heat flow is measured in two common units, the calorie and the Joule. 1 calorie= 1 kilocalorie = 1000 calories. A calorimeter is the device used to measure the absorption or release of heat. In this lab, the water in aluminum can “calorimeter” gains the heat lost during the combustion of a Cheeto.…

    • 971 Words
    • 4 Pages
    Good Essays
  • Satisfactory Essays

    Lab 40 Calorimetry

    • 490 Words
    • 2 Pages

    • Heat Capacity is the energy required to raise the temperature of a 1 g sample of a substance 1 0C (or 1 Kelvin degree).…

    • 490 Words
    • 2 Pages
    Satisfactory Essays